Diffusion MRI of bone marrow in health and oncologic disease

Anwar Padhani

Consultant Clinical Radiologist, Mount Vernon Cancer Centre, London
Professor of Cancer Imaging, Institute of Cancer Research, London
Executive chair, International Cancer Imaging Society
Trustee, International Society of Magnetic Resonance in Medicine

SCBT/MR 2016
51 yo female with metastatic breast cancer. Rx Erubulin chemotherapy. No G-CSF.

What is the response between Baseline → Ex2 Ex2 → Ex3?

A. Response → Response
B. Progression → Progression
C. Response → Progression
D. Progression → Response
E. Can’t tell → won’t tell
51 yo female with metastatic breast cancer. Rx Erubulin chemotherapy. No G-CSF.
What is the response between Baseline \rightarrow Ex2 then Ex2 \rightarrow Ex3?

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Date</th>
<th>Description</th>
<th>Date</th>
<th>Description</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16Jan14</td>
<td>Baseline</td>
<td>14May14</td>
<td>x6 Erubulin</td>
<td>08Sept14</td>
<td>x12 Erubulin</td>
<td>16Jan14</td>
<td>Baseline</td>
</tr>
<tr>
<td>14May14</td>
<td>x6 Erubulin</td>
<td>16Jan14</td>
<td>Baseline</td>
<td>14May14</td>
<td>x6 Erubulin</td>
<td>08Sept14</td>
<td>x12 Erubulin</td>
</tr>
</tbody>
</table>

C. Response \rightarrow Progression
51 yo female with metastatic breast cancer. Rx Erubulin chemotherapy. No G-CSF.

What is the response between Baseline → Ex2 then Ex2 → Ex3?

C. Response → Progression
51 yo female with metastatic breast cancer. Rx Erubulin chemotherapy. No G-CSF.

What is the response between Baseline \rightarrow Ex2 then Ex2 \rightarrow Ex3?

16Jan14
Baseline

14May14
x6 Erubulin

08Sept14
x12 Erubulin

Biological processes involved in therapy induced changes in DWI

Siemens Oncotreat Software, WIP

C. Response \rightarrow Progression

Normal bone marrow

- Hematopoietic organ: produces ≈ 500 billion blood cells/day
- 4% of total body mass of adult humans
- Adult BM distribution established by 25 yo
- Age related changes occur in bone and bone marrow
 - Trabecular bone loss & increased fat (>40 yo [>♀])
 - Decreases in cellularity/synthetic function; starts in 5th-6th decades
 - Reticulin/collagen increases with age
Proliferation, migration, and invasion of cancer cells in BM displaces fat & normal myeloid and erythroid cells.
Osteoblasts: Bone scans, NaF-PET, CT

Bone trabeculae & osteoclasts: CT scans (qCT), UTE-MRI, FDG-PET, R2*

Vascularity: DCE-MRI

Cell density: DW-MRI
Fat water imaging: Dixon MRI, MRS, CT

Tumor cell surface & cytoplasmic receptors (specific): F-DHT, FES, labelled antibodies/pharmacophores to PSA, Ga/F-PSMA, HER2-neu

Tumor metabolism (non-specific): FDG, choline, acetate & methionine-PET

Fat cells

Normal myeloid, erythroid precursor & stromal cells

DWI enhances specificity to tumor in BM

75 yo with metastatic breast cancer
What b-value choice for whole body MRI?

- What water compartment is being studied?
 - Minimize perfusion & susceptibility effects and maximize sensitivity to BM cellular content
- Outline of body should be retained to enable registration of images to anatomy sequences
- Image distortions need to be minimized
- Need to evaluate normal/pathologic soft tissues also (liver, nodes etc)
- Need to maximize tumor-bone marrow CNR
- Yield reliable estimates of ADC

DWI is an integral part of whole body assessments (Eyes to thighs in 50 mins; 4500 images!)
WB-DWI sub-protocol
(STIR for FS – total 25mins)

<table>
<thead>
<tr>
<th>Coils</th>
<th>surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOV (cm)</td>
<td>450</td>
</tr>
<tr>
<td>Rectangular (%)</td>
<td>100</td>
</tr>
<tr>
<td>Acquisition matrix</td>
<td>128i</td>
</tr>
<tr>
<td>Scan %</td>
<td>80</td>
</tr>
<tr>
<td>Slices</td>
<td>50</td>
</tr>
<tr>
<td>Thickness/gap</td>
<td>5/0</td>
</tr>
<tr>
<td>Z-axis coverage (cm)</td>
<td>25</td>
</tr>
<tr>
<td>TR (ms)</td>
<td>9000</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>min (68)</td>
</tr>
<tr>
<td>STIR fat sat; TI (ms)</td>
<td>180</td>
</tr>
<tr>
<td>Half scan factor</td>
<td>6/8i</td>
</tr>
<tr>
<td>b-values</td>
<td>50, 900</td>
</tr>
<tr>
<td>NE</td>
<td>6</td>
</tr>
<tr>
<td>Bandwidth (Hz/pix)</td>
<td>1628</td>
</tr>
<tr>
<td>Parallel imaging factor</td>
<td>2</td>
</tr>
<tr>
<td>Scan time/station (mins)</td>
<td>5:51</td>
</tr>
</tbody>
</table>
Normal bone marrow on DWI

- Age related changes in bone and bone marrow are reflected on high b-value DWI
 - Trabecular bone loss & increased BM fat (>40 yo [♀])
 - Decreases in BM cellularity with age
 - BM (reticulin/collagen) increases with age

Variability within same age group

17 yo 29 yo 45 yo 57 yo 67 yo
Bone marrow hyperintensity on DWI (=hypercellularity)

- Malignant infiltration
- Children & young adults
- Primary or secondary polycythemia
 - High altitude living and athletes
 - Pregnant or recently pregnant
 - Hypoxia associated: smoking, COPD, obstructive sleep disease (obesity)
 - Chronic cardiac failure
 - Neoplastic – RCC, HCC, VHL disease, pheochromocytoma, functional adrenal adenomas
 - Drugs – anabolic steroids, erythropoietin
- Rebound/recovery after BM toxic Rx
- Granulocyte-Colony Stimulating Factors (G-CSF/GM-CSF therapy)

<table>
<thead>
<tr>
<th>Lactating</th>
<th>20 weeks pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>01Feb13</td>
<td>23Aug13</td>
</tr>
</tbody>
</table>

26 yo H/O melanoma on surveillance
Factors affecting BM cellularity-ADC relationships

- Blood flow is highest in malignant marrow
- Extracellular space water is greater for mixed red marrow
- Fat cells impede water motions > hemopoietic cells
 - Fat cells are 50-65 µm in diameter (≈65,000 µm³)
 - Hemopoietic cells 5-15 µm in diameter (≈525 µm³)
- b-values <1000 s/mm², sensitivity to slow intracellular water ↓
Non-linear, positive (paradoxical) relationship between ADC & bone marrow cellularity

- **Yellow (fatty) marrow** → low DW SI & ADC
 - Many large fat cells & few smaller cells
 - Low water content & cellularity
 - Fat acts as a repellent to water
 - Low perfusion

- **Red bone marrow** → higher DW SI & ADC
 - Less big fat cells & more smaller cells
 - More water within & outside cells
 - Larger extracellular water fraction
 - Higher perfusion

- **Tumor & BM hyperplasia** → highest DW SI but **variable** ADC
 - Highest cellularity within restricted bone marrow space (increased tortuosity)
 - Smaller extracellular water fraction
 - Highest perfusion

BM hypointensity on DWI
Bone marrow b900 SI decreases with chemotherapy
25F – Metastatic malignant ovarian teratoma. Pre & Post x3 BEP
Left breast cancer – changes in normal marrow on adjuvant endocrine Rx (letrozole)
Changes in normal marrow on adjuvant letrozole

$b900$ SI ↓
ADC (677 → 676 μm2/s) ↔
$F\%$ (42 → 49) ↑
Iron overload and marrow signal intensity

<table>
<thead>
<tr>
<th>Date</th>
<th>23Dec14</th>
<th>25mar15</th>
</tr>
</thead>
<tbody>
<tr>
<td>b900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hardware factors and bone marrow signal intensity

Field strength & coil design effects

1.5T Avanto
x4 50cm stations

1.5T AvantoFit
x4 50cm stations

3T PrizmaFit
x4 50cm stations

1.5T AvantoFit
x4 60cm stations

51 yo. Metastatic breast cancer. Rx TDM-1 in complete response.
Summary: causes of bone marrow intensity changes on high b-value images

- BM Hyperintensity
 - ↑ BM fat with ↓ trabecular bone thickness (normocellularity)
 - ↑ ↑ matrix calcification/ossification/ trabecular bone thickness

- BM Hypointensity
 - ↑ BM iron & collagen

- BM hypercellularity
 - ↑ ↑ ↑ matrix calcification/ossification/ trabecular bone thickness