4D flow MRI in Congenital Heart Disease

SCBT/MR Annual Meeting
Salt Lake City
September 20, 2016
Scott B. Reeder, MD, PhD

Department of Radiology
University of Wisconsin
Madison, WI
Disclosures

• University of Wisconsin-Madison receives research support from GE Healthcare, and Bracco Diagnostics

• Founder – Calimetrix, LLC

• Shareholder – Elucent Medical

• Consulting - Parexel International
Outline

• Overview of phase contrast MRI
• 4D flow MRI – what is it?
• How we perform 4D flow MRI in congenital heart disease
• Workflow
• Applications and examples
All MR Images have Magnitude and Phase

Magnitude

Phase
Bipolar Gradients in Presence of Moving Spins

Static Spins

Moving Spins

\[M_y F_0 = 0 \]

Bipolar Gradients in Presence of Moving Spins
Phase Contrast Velocity Imaging

Segmentation
(Spatial Integration)

Volume (ml/heartbeat)

Area under flow curve
(Temporal Integration)
“4D”-Flow MRI

- Volumetric coverage
 - 3-directional flow encoding: 4 acquisitions
- ECG gating
- Breathing motion in abdomen and chest
 - Respiratory gating/triggering

Courtesy Oliver Wieben, PhD – UW-Madison
Radial Sampling and Undersampling with MRA

k_x, k_y
Radial 4D flow MRI: \textit{PC VIPR}1

1TL Gu, et al. AJNR 2005.
2KM Johnson, et al. MRM 2008.
NCE intracranial MRA with PC VIPR

Normal Volunteer
PC VIPR Parameters
- Dual Echo
- FOV: 20 x 20 x 20 cm
- Res: 0.6 x 0.6 x 0.6 mm
- 9000 Projections (36x)
- TR=15.9
- Bandwidth = 31.25
- VENC = 50 cm/s
- 5:07 min Scan Time

Same Cartesian PC
- 48+ min Exam (Partial)

Same TOF
- 24+ min Exam (Partial)

1KM Johnson et al. Magn Reson Med. 2008 Dec;60(6):1329-
Source 4D flow MR Images
Applications in Congential Heart Disease

• **Qualitative**
 – Anatomy
 – Flow direction

• **Quantitative**
 – Flow (ml/cycle)
 – Velocity
 – Pressure gradients
 – Shear stress
 – Kinetic energy

• **Aortopathy**
 – Coarctation
 – Bicuspid aortic valve
 – Aneurysms, dissection

• **Congenital Cardiac disease**
 – Comprehensive flow assessment, eg. Qp/Qs
 – Fontan evaluation
 – Complex anatomy
 – *Multiple abnormalities*
2 month old boy with Scimitar Syndrome
2yo boy with Right Lung PAPVR

CINE SSFP

CE-MRA

4D flow MRI

ASD

LPV

RPV
2yo boy with Right Lung PAPVR

CE-MRA

4D flow MRI
Complex Congenital Heart Disease: Swaddled Infant

Findings

- Coarctation
- Aberrant right subclavian
- AV canal
- Patent ductus arteriosus
- Patent ductus venous with PV shunting

17 day old girl with complex congenital heart disease
Complex Congenital Heart Disease: *Swaddled Infant*

17 day old girl with complex congenital heart disease

Flow quantification

AV Canal

Coarctation
Comprehensive Flow Assessment: *Fontan*

15yo female with DORV s/p extra-cardiac Fontan
Comprehensive Flow Assessment: *Fontan*

15yo female with DORV s/p extra-cardiac Fontan

DICOM report in PACS
Fontan Circulation: Flow Distribution Quantification

A: time = 0 ms
B: time = 52 ms
C: time = 104 ms
D: time = 1435 ms
E: PC-MRA
F: mixing

Kelly Jarvis, Northwestern University
Computational Fluid Dynamics:
Virtual Surgery and Rapid Prototyping
Computational Fluid Dynamics: Virtual Surgery and Rapid Prototyping

MRA

3D Printing

Flow Phantom
2 year-old male with aortic coarctation
Navier-Stokes Equation

\[\nabla P = -\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) + \rho g + \mu \nabla^2 \mathbf{v} \]

- \(P = \text{pressure} \)
- \(\mathbf{v} = \text{velocity} \)
- \(\mu = 4 \text{ cP (centipoise)} \)
- \(\rho = 1066 \text{ kg/m}^3 \)
- \(g = 9.8 \text{ m/s} \)
Non-invasive Pressure Measurements

Bley, et al. Radiology
Pressure Gradients Across Coarctation

18 month old with aortic coarctation

Complete hemodynamic assessment possible
“Image Once, Cut Many”

- Large imaging volume acquired in single 8-12 minute acquisition
- Neonates / infants
 - Feed, swaddle, image in ~ 10 minutes without sedation
- Comprehensive, time-resolved data
- Requires significant post-processing
- Can interrogate any vessel post-acquisition
- Works well with clinical workflow
- Technologists can acquire images without a radiologist
- Post-processing requires experience
Thank you!

- Chris Francois, MD
- Alex Frydrychowicz, MD
- Tom Grist, MD
- Kevin Johnson, PhD
- Ben Landgraf, MD
- Michael Markl, PhD
- Scott Nagle, MD, PhD
- Alejandro Roldan, PhD
- Mark Schiebler, MD
- Oliver Wieben, MD

Grant Support
- WARF Accelerator
- NIH: R01 DK083380
 R01 DK088925
 R01 DK096169
 RC1 EB010384