When is MRI Useful in Evaluating Renal Masses?

Stuart G. Silverman, M.D., FACR

Professor of Radiology
Harvard Medical School
Director, Abdominal Imaging and Intervention
Brigham and Women’s Hospital
Boston, MA
When is MRI Useful in Evaluating Renal Masses?

Stuart G. Silverman, M.D., FACR

Disclosures:

Consultant, Galil Medical Ltd, Yokneam, Israel

Book Royalties, Lippincott, Williams, & Wilkins, Philadelphia, PA
Renal Mass MRI Indications

Although CT is the initial test of choice in detecting and characterizing renal masses, MRI is valuable in selected patients.
Renal Mass MRI Indications

Patient populations...

- Iodinated CM allergy
- Renal Insufficiency (Diffusion)
- Pregnancy
- Young patients, need for serial f/u

...CT relatively contraindicated
Hyperdense, enhancing mass
Indeterminate cystic mass
Pre and post ablation
(Staging questions e.g., IVC involvement and extent)

...MRI provides added value
Renal Mass MR Protocol

- T1-w SPGR or FSE
- T2-w FRFSE or SSFSE
- Chemical Shift (In/OOP)
- T1-w SPGR, Fat suppressed, pre + post contrast material
- Subtraction images

...Enhanced Protocol
BWH Gadolinium Policy

- Obtain serum Cr / eGFR (w/in 3 wks) in pts with h/o kidney disease, DM, SLE, MM, on dialysis, or +FHx

- eGFR > 60 – any dose Gd given

- eGFR 30-60 – max 20 cc Gd

- eGFR <30, dialysis, or hepatorenal syndrome – “medical necessity”; written informed consent obtained
Renal Mass MR Protocol

- T1-w SPGR or FSE
- T2-w FRFSE or SSFSE
- Chemical Shift (In/OOP)
- GRASS
- Diffusion (DWI) B = 0, 200, 400, 800, 1000; ADC (3T)

...Unenhanced Protocol
Renal Mass MRI

- Structural analysis (Bosniak applied to MRI)
- T1 and T2
- Contrast media enhancement
- Fat cell detection (fat suppression)
- Intracytoplasmic lipid detection (chemical shift)
- Diffusion
Cystic Renal Masses (after Bosniak)

<table>
<thead>
<tr>
<th>Cat</th>
<th>Term</th>
<th>Prob %</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Simple</td>
<td>0</td>
<td>proven</td>
</tr>
<tr>
<td>II</td>
<td>Complicated</td>
<td>@0</td>
<td>variable</td>
</tr>
<tr>
<td>IIF</td>
<td>Indeterminate</td>
<td>?</td>
<td>Israel</td>
</tr>
<tr>
<td>III</td>
<td>Indeterminate</td>
<td>50</td>
<td>Aronson</td>
</tr>
<tr>
<td>IV</td>
<td>Solid Features</td>
<td>>95</td>
<td>Curry</td>
</tr>
</tbody>
</table>

References:
- Israel AJR 2003
- Aronson Urol Rad 1991
- Curry AJR 1991
- Bosniak MA Radiology 1991
- Israel and Bosniak Radiology 2005
• Of 69 cystic masses, MR identified more septa in 8 (12%) masses and thicker walls or septa in 7 (10%) compared with CT.

• In 2 (3%) masses, enhancement was different.

• MR upgraded 7 masses: II to IIF in 2, IIF to III in 3, and III to IV in 2.
Cystic Renal Masses – Bosniak applied to MRI

- MRI may show enhancement not seen at CT
- MRI may correct pseudoenhancement at CT
- MRI may miss calcifications

MRI most helpful:
Category IIIF and III lesions
Confirm minimal (<1 cm) cystic masses as simple...

Israel and Bosniak Radiology 2004
ROI Principles

• Same acquisition parameters pre + post
• Search enhanced images first
• Lesion ROI
• Homogeneous population of tissues
Enhancement at MRI

- **Unequivocal** ≥ 20%
- **Equivocal** 15 – 19%
- **None** < 15%

% = SI Change / Native SI

Ho VB Radiology 2002
Renal Cell Carcinoma

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Prevalence</th>
<th>Prognosis*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear cell</td>
<td>70%</td>
<td>55-60%</td>
</tr>
<tr>
<td>Papillary</td>
<td>15-20%</td>
<td>80-90%</td>
</tr>
<tr>
<td>Chromophobe</td>
<td>6-11%</td>
<td>90%</td>
</tr>
<tr>
<td>Collecting duct</td>
<td><1%</td>
<td><5%</td>
</tr>
<tr>
<td>Unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*5-yr survival

Kim AJR 02 178:1499
MRI Features of Renal Masses

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>CE</th>
<th>Dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>dark</td>
<td>bright</td>
<td>-</td>
<td>Simple Cyst</td>
</tr>
<tr>
<td>bright</td>
<td>bright</td>
<td>-</td>
<td>High Protein Cyst</td>
</tr>
<tr>
<td>bright</td>
<td>dark</td>
<td>-</td>
<td>Hemorrhage/Cyst</td>
</tr>
<tr>
<td>dark</td>
<td>bright</td>
<td>+</td>
<td>RCC (CC type)</td>
</tr>
<tr>
<td>dark/</td>
<td>dark</td>
<td>+</td>
<td>AML, RCC (papillary)</td>
</tr>
<tr>
<td>bright</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bright</td>
<td>bright</td>
<td>+</td>
<td>AML, RCC (CC)</td>
</tr>
</tbody>
</table>
MRI of Papillary RCC (n=20)

<table>
<thead>
<tr>
<th>MRI Feature</th>
<th>T1 SE</th>
<th>T1 GE</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypointense</td>
<td>0</td>
<td>9 (53%)</td>
<td>14 (70%)</td>
</tr>
<tr>
<td>Isointense</td>
<td>13 (93%)</td>
<td>8 (47%)</td>
<td>0</td>
</tr>
<tr>
<td>Hyperintense</td>
<td>1 (7%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heterogenous</td>
<td>0</td>
<td>0</td>
<td>6 (30%)</td>
</tr>
<tr>
<td>Not performed</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

83% (10/12) of small (<3cm) tumors were T2-hypointense

Oliva et al AJR 2009
AML – Keys to Diagnosis

4% AMLs contain no definite fat by imaging

Angiomyolipolipomatosis with minimal fat
AML without Fat by Imaging

• Retrospective review of 175 resected lesions suspicious for RCC by imaging.

• All 6 AMLs were uniformly hyperdense, enhanced, and were hypointense on T2.

• Of 100 RCCs reviewed: only 2% were uniformly hyperdense & enhancing.

Jinzaki et al, Radiology 1997
Angiomyolipoma

The identification of fat cells in a noncalcified renal mass, in an adult, is virtually diagnostic of a benign renal angiomyolipoma.
<table>
<thead>
<tr>
<th>Tissue</th>
<th>Fat Cells (FC)</th>
<th>Intracytoplasmic Lipid (ICL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCC</td>
<td>N *</td>
<td>Y</td>
</tr>
<tr>
<td>AML</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

* Except case reports
AML with Minimal Fat

- Biopsy can be used to diagnose AML, particularly with the aid of immunocytochemistry.

<table>
<thead>
<tr>
<th></th>
<th>AML</th>
<th>RCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MART1</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>SMA</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HMB-45</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>RCC</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Granter et al. Cancer 1999
AML – Diagnostic Criteria

- CT - ROI < -10 HU
- MRI - fat suppression (not alone)
- Biopsy - fat cells; thick walled vessels; smooth muscle (SMA and HMB45)

AML w/ imageable fat cells!
AML w/o imageable fat cells!
AML with Minimal fat

- AMLs demonstrating no fat have a characteristic appearance (hyperdense and enhancing) that is not common for RCC.
- Biopsy can be used to biopsy them, and avoid unnecessary surgery.
Renal Mass Biopsy

Emerging Indications

• Small (≤3 cm), hyperdense, homogeneously enhancing renal masses

• Renal masses referred for percutaneous ablation

• Indeterminate cystic renal mass (Bosniak Category III)

Silverman et al Radiology 2006
Short (dark) T2 Masses

- Hemorrhagic cyst
- RCC (papillary type or clear cell RCC that bled)
- AML (fat poor, rich in smooth ms – spindle cells)
- (Leiomyoma of capsule)
Diffusion Weighted Imaging

- Random motion of water molecules (Brownian notion)
 - Free Diffusion
 - Restricted Diffusion

- Occurs in intracellular, extracellular, and intravascular spaces
Diffusion Weighted Imaging

DDx - Restricted Diffusion

- **Cancer** (increased number of cells)
- **Ischemia** (cytotoxic edema)
- **Inflammation** (increased viscosity)
ADC (Apparent Diffusion Coefficient)

Tissues with restricted diffusion
- Low ADC values
- Low SI on ADC map (contrasts DWI)

Tissues with free diffusion
- High ADC values
- High SI on ADC map (contrasts DWI)

Pitfalls!
- High ADC = well diff or necrotic tumor
- Low ADC = may be normal, nodes
Diffusion Weighted Imaging

<table>
<thead>
<tr>
<th>Dx</th>
<th>T2WI*</th>
<th>DWI</th>
<th>ADC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2 shine through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrosis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

variable, eg, PRCC, Prostate ca – T2 hypointense
DWI – Renal Masses

- Mean ADC of RCC (1.41) was significantly lower than benign lesions (2.23) (ADCx10^3/mm^2/sec)
- Mean ADC of oncocyotomas (1.91) was significantly higher than solid RCC (1.54).
- AML had the lowest ADC though…

Taouli et al Radiology 2009
Diagnostic Algorithm

Renal mass

<-10 H
AML

<= 20 H
Contrast CT
+ Δ 20H
Solid neoplasm

no Δ
Simple cyst

20 - 40 H
Sonography
no Δ
Sonography

>40 H
Solid neoplasm

+ Δ 20 H

< 20 H
Pre - Contrast CT

< 20 H
Contrast CT

≥20 H

20 - 40 H
Solid neoplasm

40 H

10 H
AML
Diagnostic Algorithm

- Hyperdense cyst
 - no Δ
 - + Δ 20H
 - Contrast CT
 - MRI
 - - Fat Supp
 - RCC (clear cell)
 - AML
 - + Fat Supp
 - AML
 - + OOPS
 - RCC (papillary)
 - RCC
 - Biopsy
 - RCC (papillary)
 - AML

- >40 H
 - Contrast CT
Take Home Messages

• There are specific indications for MRI of renal masses
• Apply Bosniak classification
• Use T1, T2, CE, FS, CSI, as clues
• Masses with short T2 are few
• Look for fat cells (AML)
• Don’t use OOPs alone to Dx AML
• Beware of AML with little or no fat
Take Home Messages

- MRI evaluates hyperdense masses and can be used to distinguish AML with minimal fat from clear cell RCC.
- MRI cannot be used to differentiate AML with minimal fat from papillary RCC or CCRCC that bled.
- Biopsy can be useful.
Take Home Messages

- The use of contrast-enhanced MRI in patients with eGFR <60 is evolving, as we understand the underlying causes of NSF.
- As T1, T2, FS, and CSI each contribute diagnostic information, non-contrast MRI may be useful.
- Diffusion-weighted MRI may be helpful, but needs research.