Objectives:

1. Review the NKF definition of chronic renal disease
2. Review risk factors for CIN and NSF
3. Provide a framework for using eGFR to manage patients at risk for CIN & NSF when giving contrast for CT & MR
4. Review recommendations by various societies for administering IV contrast media based on renal function

Tuesday, March 9, 2010
Brian Herts, MD
Associate Professor of Radiology
Head, Section of Abdominal Imaging
Cleveland Clinic
National Kidney Foundation - Kidney Disease Outcomes Quality Initiative (KDOQI)

- Chronic Kidney Disease (CKD)
 - Patients with kidney failure have annual mortality rate of 15%
 - Average life expectancy for 60 year-old
 - w/o CKD - 21 years
 - w/ CKD - 4.6 years

- What changed? In 2002, the NKF made a big effort to increase awareness of CKD publishing clinical guidelines based on GFR
GFR and mortality rates

Death:
- from any cause
- from CV event

<table>
<thead>
<tr>
<th>e-GFR:</th>
<th>(ml/min/1.73 m²)</th>
<th>Age-Standardized Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>>60</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>45-59</td>
<td>1.08</td>
<td>2.11</td>
</tr>
<tr>
<td>30-44</td>
<td>3.65</td>
<td>4.76</td>
</tr>
<tr>
<td>15-29</td>
<td>11.29</td>
<td>11.36</td>
</tr>
<tr>
<td><15</td>
<td></td>
<td>21.8</td>
</tr>
</tbody>
</table>

CKD - definition & prevalence

- CKD defined as GFR < 60 ml/min/1.73m² for more than 3 months … or …
- Kidney damage documented by biopsy, proteinuria

- Prevalence of CKD
 - Stage 1 GFR ≥ 90 64%
 - Stage 2 GFR 60-89 31%
 - Stage 3 GFR 30-59 4.3%
 - Stage 4 GFR 15-29 0.2%
 - Stage 5 GFR < 15 0.2%

4.5% is the population we are concerned with
Minimizing CIN & NSF requires identifying patients at increased risk

- Most radiologists use serum Creatinine to assess CKD
- Cutoffs used are variable
 - 1.5 mg/dl – 35%
 - 1.7 mg/dl – 27%
 - 2.0 mg/dl – 31%
 - Elicker et al 2006

- Serum creatinine
 - depends on body mass, wt, age, and sex
 - does not rise until GFR is reduced by 50%

- You are not alone?!
 - There is a general lack of awareness of significance of GFR
 - eGFR 15-59 ml/min/1.73m² - 24.3% aware of kidney disease
Contrast-induced Acute Kidney Injury

• Definition: typically 25% or 0.5 mg/dl increase in serum creatinine
 – AFTER excluding other causes … this part often forgotten

• Usually self-limited (2 -3 weeks)

• Majority of studies looking at incidence of CI-AKI are of …
 – Intra-arterial injections (angiography, cardiac catheterization)
 – Contrast agent studies assessing high v. low, low v. iso-osmolar

• Few studies looking directly at CI-AKI with intravenous contrast for CT scans, even fewer with NCCT controls
Risk factors for CI-AKI / NSF - who do we screen?

- **CIN risk factors**
 - Dehydration
 - CHF
 - Diabetes
 - Kidney disease
 - Large contrast volume
 - Age > 70 yrs

- **CKD risk factors**
 - Age > 60 yrs
 - HTN
 - DM
 - CVD
 - Family history

- **AKI / CKD risk factors**
 - Nephrotoxic drugs
 - Renal surgery / infection

- **NSF risk factors**
 - Kidney disease
 - Contrast volume
 - Pro-inflammatory factors
Estimating GFR - MDRD v. Cockcroft-Gault
(because we cannot measure GFR in all of our patients)

• C-G - Canadian VA inpatients
 – Estimates measured creatinine clearance
 – Mostly male (VA) patients

✓ MDRD based on outpatients with CKD
 • Estimates GFR from 125I-iothalamate clearance

• C-G ‘less inaccurate’ in normal renal function
• C-G ‘less accurate’ in older and obese patients
• MDRD same to more accurate than C-G in CKD

✓ We are not looking for accuracy of normal renal function, just need sensitivity for identifying renal insufficiency – therefore choose MDRD
Scope of the problem for CT – Number of patients with normal serum creatinine but renal insufficiency presenting for outpatient CT

- 15.2% of outpatients with sCr < 1.5 mg/dl had Creatinine clearance (Cockcroft-Gault) < 50 ml/min
 - Duncan et al, Nephrol Dial Transplant 2001

- 9.9% of patients with sCr < 1.5 mg/dl had eGFR < 60 ml/min/1.73m²
 - Herts et al, Radiology 2008
European Society of Uroradiology (ESUR)

• CIN Risk: eGFR < 60, dehydration, CHF, Age > 70, meds
 – Recent eGFR < 7 days
 – Recommendations for eGFR < 60 or with increased risk of nephrotoxicity
 – Stop nephrotoxic drugs x 24 hrs before

• Recommendation: IV hydration 1 ml/kg 6 hours before and after

Canadian Association of Radiologists

• CIN risk: DM, renal disease or solitary kidney, dehydration, age > 70 yrs, CVD, chemotherapy, CVD

• GFR 30 - 60 mL/min/1.73m² - low-to-moderate CIN risk =

• GFR 15 - 30 mL/min/1.73m² - high CIN risk*

• Fluid administration - 300-500 ml 0.9% saline or NaHCO3 solution IV before contrast, or oral hydration (salt & H2O)
Publications influencing Cleveland Clinic policy:

 – 421 patients with eGFR < 60 ml/min/1.73m²
 – 6.5% developed sCr increase ≥ 25%, but
 ✓ < 1% of patients with eGFR > 45 ml/min/1.73m² developed sCR increase > 0.5 mg/dl
 – None required dialysis
 – Hospitalization and death (30-days) were unrelated to CI-AKI

• Solomon (commentary)
 ✓ Outpatient risk extremely low, especially with eGFR > 45 ml/min/1.73m²
Cleveland Clinic guidelines (as of Jan 2009)

• Who gets screened for CKD?
 – Known chronic kidney disease
 – Diabetes Mellitus
 – Patient age greater than or equal to 60 yrs
 – Dehydration
 – Congested Heart Failure (CHF)
 – Multiple Myeloma
 – History of kidney surgery / Kidney neoplasm
 – Recent nephrotoxic chemotherapy or other nephrotoxic drugs

• Estimated GFR within 2 months or more recent per history
 – eGFR is now automatically generated by HIS for outpatients
Cleveland Clinic guidelines - Iodinated contrast

<table>
<thead>
<tr>
<th>eGFR ≥ 60 mg / ml / 1.73 m²</th>
<th>Considered at no increased risk of CIN</th>
</tr>
</thead>
</table>
| eGFR 45-59 mg / ml / 1.73 m² | w/ risk factors (diabetes, dehydration, drugs)
Oral hydration suggested, consider IV hydration individual basis
w/o risk factors
Oral hydration suggested (but not proven to be helpful) |
| eGFR 30-44 mg / ml / 1.73 m² | w/ risk factors (diabetes, dehydration, drugs)
IV hydration necessary
w/o risk factors
Oral hydration minimum, consider IV |
| eGFR 15-29 mg / ml / 1.73 m² | Consider alternative studies
IV hydration necessary |
| eGFR < 15 mg / ml / 1.73 m² | Only if on dialysis or emergent indication |
Cleveland Clinic guidelines - Gadolinium contrast

<table>
<thead>
<tr>
<th>eGFR >30 mg / ml / 1.73 m²</th>
<th>No specific recommendation</th>
</tr>
</thead>
</table>
| eGFR 15-30 mg / ml / 1.73 m² | Obtain informed consent
 Single dose only, minimum needed for exam
 Nephrology consult
 ProHance |
| eGFR < 15 mg / ml / 1.73 m² | Not advised |

based on FDA guidelines
IV hydration

• Inpatients - 1 mg/kg/hr for 12 hours both before and after contrast (coordinated with primary service)

• Outpatients
 – 300-500 ml over 2-3 hours depending on patient
 – 0.9% normal saline solution or
 – Bicarbonate solution (3 amps in 500 ml D5W)
 – Push p.o. fluids after (helpful)
Renoprotective agents

• Meta-analysis of 41 studies by Kelly AM, Ann Intern Med 2008
• N-Acetylcysteine scavenges oxygen free radicals & vasodilatory
 – NAC - relative risk of CI-AKI 0.62
 – 600 mg bid day before and day of the procedure is the dosing generally studied
• Theophylline - relative risk 0.49 - but not statistically significant
• Saline - relative risk 0.62
• Bicarbonate - relative risk 0.12
• Ascorbic acid - relative risk 0.46
• Others without effect…
 – Furosemide, mannitol, fenoldopam
“Minimizing the risk” of CI-AKI & NSF

• General recommendations
 – Formulate a policy for eGFR < 60 ml/min/1.73m²
 – worry at eGFR < 45 ml/min/1.73m²
 – Minimize dehydration - d/c Lasix other diuretics for 24 hours before study (if clinically feasible)
 – rarely done in practice
 – IV hydration for those at greatest risk
 – N-acetylcystine (Mucomyst) inexpensive and may be beneficial
 – Minimize use of Gd in patients eGFR < 30. Try non-enhanced MR or alternative studies
 – Determine for yourself the relative risk & benefits of CECT v. MR w/ Gd
 – Don’t do high dose or multiple Iodine or Gd studies
References

• Toprak O. Am J Med Sciences 200;334:283
• Benko A et al. Consensus guidelines for the prevention of CIN. Canadian Association of Radiologists www.car.ca
• Elicker BM et al. AJR 2006;186:1651-1658
• www.esur.org/Contrast-media.46.0.html
• Levy AS et al. Ann Intern Med 1999;130:461-470
• Lin J et al. Curr Opin Nephrol Hypertens 2005;14:105-110
• Go AS et al, N Engl J Med 2004
• Kelly AM et al, Ann Intern Med 2008;148:284