Aortic CTA vs MRA: which exam to perform?

Thomas M. Grist, MD
University of Wisconsin-Madison
Objectives

• List the advantages and limitations of MRA and CTA.
• Understand the diagnostic information available from each method.
• Discuss the role for each technique in evaluation of aortic vascular diseases
Outline

• Differences between CTA and MRA
 • Contraindications
 • Scanning
 • Diagnostic differences
 • Artifacts
 • Resolution
 • Function

• Cases
Contraindications - CTA

- Intravenous contrast
 - Prior anaphylactic reaction
 - Renal insufficiency
- Radiation exposure
 - Pregnant patients
 - Young adults and children
Radiation dose: Growing risk

- CT has revolutionized medicine since its invention in 1967
 - Main method of diagnosing many medical problems
 - Hounsfield and Cormack received Nobel Prize in 1979

- Increasing concern over radiation exposure from medical imaging

Figure 2. Estimated Number of CT Scans Performed Annually in the United States.
The most recent estimate of 62 million CT scans in 2006 is from an IMV CT Market Summary Report.

Computed Tomography — An Increasing Source of Radiation Exposure

DJ Brenner and EJ Hall. NEJM 2007; 357: 2277-2284.

Estimating Risk of Cancer Associated With Radiation Exposure From 64-Slice Computed Tomography Coronary Angiography

Radiation dose from CTA

<table>
<thead>
<tr>
<th>Examination</th>
<th>Typical Effective Dose (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background radiation</td>
<td>3 (per year)</td>
</tr>
<tr>
<td>Chest x-ray</td>
<td>0.02 – 0.05</td>
</tr>
<tr>
<td>Chest CT</td>
<td>5 – 7</td>
</tr>
<tr>
<td>Coronary CTA</td>
<td>5 – 20</td>
</tr>
<tr>
<td>Abdominal CTA</td>
<td>5 – 20</td>
</tr>
<tr>
<td>Coronary cath (diagnostic)</td>
<td>2 – 6</td>
</tr>
</tbody>
</table>
Radiation dose: Cancer risk

DJ Brenner and EJ Hall. NEJM 2007; 357: 2277-2284.

Caveat: Based on the linear, no-threshold model
Radiation dose: Dose reduction

- Cancer risk is not constant and varies between men and women

- Implications for cardiovascular CT
 - In young patients
 - Consider imaging modalities that do not use ionizing radiation (MRI/MRA, ultrasound)
 - In older patients
 - Risk from CTA is less than for catheter angiography

- **Dose reduction techniques should be used when possible**

The *Image Gently* Campaign: Working Together to Change Practice

“Contraindications” – MRA

- Magnet
 - Pacemakers\(^1\)
 - Other implanted devices\(^1\)
 - Claustrophobia

- Gadolinium
 - Allergies *extremely* rare
 - Patients at risk of NSF
 - Pregnancy

\(^1\)MRI.safety.com
University of Wisconsin:

- Any patient with
 - eGFR ≤ 30 mL/min/1.73m²
- Inpatient with
 - eGFR ≤ 60 mL/min/1.73m² AND
 - Pro-inflammatory condition/event
 - Vascular injury
 - Surgery
 - Systemic infection

Non-contrast MRA
Scanning differences

<table>
<thead>
<tr>
<th></th>
<th>CTA</th>
<th>MRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>Large FOV with single scan</td>
<td>Large FOV with multiple scans</td>
</tr>
<tr>
<td>Setup time</td>
<td>Short</td>
<td>Long</td>
</tr>
<tr>
<td>Scan time</td>
<td>Short</td>
<td>Long(^1)</td>
</tr>
<tr>
<td>Technical complexity</td>
<td>Easy to perform</td>
<td>More difficult to perform</td>
</tr>
<tr>
<td>Postprocessing time</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Claustrophobia</td>
<td>Rare</td>
<td>Occasionally</td>
</tr>
</tbody>
</table>

Overall,

CTA quicker and easier to perform.

MRA more complex, but with more information.

\(^1\)Many more sequences and much more information acquired with MRA. Actual MRA sequences are short.
Artifacts

- Metal –
 - CT – beam hardening
 - MR – susceptibility

- Severity depends on type, size, location
- CAUTION when grading in-stent stenosis

![CTA and MRA images with annotations](image-url)
MRA: Stent Artifact

- Stainless steel a problem
- Nitinol generally OK
Artifacts

- **Metal** –
 - CT – beam hardening
 - MR – susceptibility

- **Severity depends on type, size, location**
 - **CAUTION** when grading in-stent stenosis

- **Calcifications**
 - CT – beam hardening overestimates stenosis
 - MR – calcifications not a problem
Resolution

- Spatial resolution
 - Ability to resolve adjacent objects
 - CTA: 0.7 x 0.7 x 1.0 mm³
 - MRA: 0.5 x 1.0 x 2.0 mm³

- Contrast resolution

CTA
MRA
DSA
Resolution

- Spatial resolution
 - Ability to resolve adjacent objects
 - CTAD: $0.7 \times 0.7 \times 1.0 \text{ mm}^3$
 - MRA: $0.5 \times 1.0 \times 2.0 \text{ mm}^3$

- Contrast resolution
 - Ability to detect lesion
 - More than spatial resolution
 - Also depends on difference in density/intensity between vessel and surrounding tissues

Diagnostic differences
Function

- CTA is static
 - Anatomical information only
 - No hemodynamic information

- MRA is dynamic
 - Anatomical and hemodynamic information
 - Phase contrast
 - Time resolved (TRICKS) MRA
Function: CTA vs. MRA

2 month old male with aortic coarctation

Phase-contrast MRA using VIPR
7 minute exam
Function: CTA vs MRA

Time resolved CE-MRA can be used to assess hemodynamics of vascular lesions

37 year-old female with pulmonary sequestration
Case 1

- 45 year-old male in MVC

Widened mediastinum – CTA to rule out traumatic aortic dissection
Case 1

- 45 year-old male in MVC
Traumatic aortic dissection

- Rapid diagnosis and high NPV required
 - CTA preferred
 - Performed at same time as other CT imaging
 - Sensitivity 100%\(^1\)
 - In absence of direct evidence of tear, likelihood of injury is 0%\(^2\)

\(^2\)M Sammer et al. AJR 2007; 189: 603-608.
Case 2

- 73 year-old male with chest pain radiating to back

Widened mediastinum – CTA to rule aortic dissection
Case 2

- 73 year-old male with chest pain radiating to back

Type A dissection
Acute aortic syndrome: dissection

- Rapid diagnosis and high NPV required
 - CTA preferred\(^1\)
 - Sensitivity 100% Specificity 98%
 - ECG-gating required to compensate for cardiac motion in ascending aorta
 - MRA for patients who cannot have CTA
 - Sensitivity 98% Specificity 98%

\(^1\) T Shiga et al. Arch Intern Med 2006; 166: 1350-1356. (Meta-analysis)
Acute aortic syndrome: dissection

Non-contrast MRA

 - Retrospective review of 29 studies.
 - Single-shot SSFP images had accuracy of 100%
Case 3

• 24 year-old female with hypertension

Bilateral tardus parvus waveforms indicating either bilateral renal artery stenosis or obstruction proximally – MRA to rule out RAS and aortic coarctation
Case 3

- 24 year-old female with hypertension
Congenital

- MRA preferred
 - No radiation exposure
 - Able to evaluate hemodynamics through abnormalities
 - Evaluation of congenital heart abnormalities, if present

Cases - Thoracic:
- Sequestration
- Coarctation
- Patent ductus arteriosus
Aortitis

- Circumferential wall thickening, aneurysm, stenosis
- MRA preferred
 - Greater soft tissue contrast increases sensitivity and specificity

Cases – Thoracic aorta
Case 4

- 92 year-old female in ED with abdominal pain

Mass in abdomen displacing bowel peripherally – CT to rule out mass
Case 4

- 92 year-old female in ED with abdominal pain

AAA Impending rupture

Thrombosed Right CIA
Abdominal aortic aneurysm: Dx

- Ultrasound – screening
 - U.S. Preventive Services Task Force recommends screening with ultrasound men 65-75 years old who have history of smoking

- CT angiography – acute AAA rupture, follow-up
 - Endovascular Rx planning

- MR angiography – follow-up
 - Size
 - Type (saccular, fusiform, mycotic)
 - Location (suprarenal, infrarenal)
 - Extent

- Digital subtraction angiography – endovascular treatment

Pre-operative planning for stent graft
Aneurysm Volume Measurement: CTA

- Non-contrast CTA
- If change in aneurysm size >2%, consider endoleak
- Then perform contrast CTA
- Bley et al, Radiology 2009
Aortic aneurysm

- Detect and measure aneurysm
 - CTA and MRA equivalent

- Detect and measure affect on AV
 - MRI with cine bSSFP and PC

 better than

- ECG-gated CTA
Aortic aneurysm: measurements

- CE-MRA, like DSA, shows lumen, not true wall-to-wall diameter
- Need to look at other sequences to get wall-to-wall measurement
Artery of Adamkiewicz

- diameter 0.6 mm
- supplied by intercostal/lumbar arteries
- origin highly variable

= Great Radiculomedullary Artery

Artery of Adamkiewicz

Albert Adamkiewicz 1850-1921
Thoracoabdominal Aortic Aneurysm Repair
- intercostal/lumbar arteries ligated
- injury artery of Adamkiewicz

spinal cord infarction
- 5-10% in centers of excellence\(^1\)

measures to avoid paralysis
- CSF drainage
- intraoperative hypothermia
- pharmacologic protection

TAA repair

Reducing Paralysis Risk During TAA Repair

Intercostal artery reimplantation\(^1,\ 2\)

paralysis decreased from
\[4.83\% \text{ to } 0.88\%\]

Challenges

Artery of Adamkiewicz
supplied by radiculomedullary arteries

tiny artery: 0.6 mm diameter

variable supply: 70 left : 30 right, T7-L2

large FoV

great anterior radiculomedullary vein

- similar appearance
- different location
- difficult to identify vein & artery
Technique

- 3T with spine coil
- 40 ml Multihance
- Sublingual Nitroglycerine
- High resolution Sagittal TRICKS acquisition

artery of Adamkiewicz

great anterior radiculomedullary vein
How To Choose???

• Depends on…
• Application
• Technology
• Availability
• Patient Population
• Contraindications
Specific Applications (the easy ones)

- Aortic dissection, acute vascular injury, acute ischemia
 - CTA
 - Rapid diagnosis

- Congenital
 - MRA
 - Avoids radiation and can evaluate hemodynamics

- Vasculitis
 - MRA
 - Better contrast resolution
Acknowledgments

• Scott Reeder, MD, PhD
• Chris Francois, MD
• Mark Schiebler, MD

Disclosures:
GE Health Care: Research support
Consultant: Bracco, Bayer
Specific Applications (our preference)

- Aneurysm
 - CTA or MRA
 - MRA avoids radiation and nephrotoxic contrast material

- Peripheral vascular disease
 - MRA preferred
 - Easier image post-processing
 - Calcified plaque not a problem with MRA

- Arteriovenous malformations
 - MRA preferred
 - Time resolved MRA