Setting Up A Abdominal MRI Protocol

Mukesh G Harisinghani, MD

Overview

→ Abdomen protocol
→ Challenges

Use existing and emerging MR techniques to overcome these challenges

Vendor specific Sequence Acronyms

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Philips</th>
<th>General Electric</th>
<th>Siemens</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISP</td>
<td>FISP</td>
<td>FISP</td>
<td>FISP</td>
</tr>
<tr>
<td>HASTE</td>
<td>HASTE</td>
<td>HASTE</td>
<td>HASTE</td>
</tr>
<tr>
<td>SS-TSE</td>
<td>SS-TSE</td>
<td>SS-TSE</td>
<td>SS-TSE</td>
</tr>
<tr>
<td>TSE</td>
<td>TSE</td>
<td>TSE</td>
<td>TSE</td>
</tr>
<tr>
<td>TSE DRIVE</td>
<td>TSE DRIVE</td>
<td>TSE DRIVE</td>
<td>TSE DRIVE</td>
</tr>
<tr>
<td>FSE</td>
<td>FSE</td>
<td>FSE</td>
<td>FSE</td>
</tr>
<tr>
<td>MPRAGE</td>
<td>MPRAGE</td>
<td>MPRAGE</td>
<td>MPRAGE</td>
</tr>
<tr>
<td>EPI</td>
<td>EPI</td>
<td>EPI</td>
<td>EPI</td>
</tr>
<tr>
<td>T2-FFE</td>
<td>T2-FFE</td>
<td>T2-FFE</td>
<td>T2-FFE</td>
</tr>
</tbody>
</table>

Body MR Protocols

Upper Abdomen

- Protocol Needs
 - Maximize CNR while having good overall signal
 - Overcome motion from breathing
 - Fulfill indication for MRI
 - Lesion detection or characterization
 - Complete scan in a reasonable time
- SNR & CNR
 - SNR is signal-to-noise ratio
 - CNR is contrast-to-noise and the ability to differentiate normal from abnormal tissues

Body MR Protocols

CNR

- Localizer
 - 3 plane gradient echo localizer
 - HASTE or FISP

- T1-weighted Sequence
 - Gradient echo in and out of phase BH
 - Can be performed in the same TR
 - Enables detection of fat within an organ or within a lesion

FAT AND WATER PROPERTIES

Fat and water frequency separation
- 1.5T ~ 4.4ms (220Hz)
- 3.0T ~ 2.2ms (450Hz)
- 3.5 ppm
- Relative difference in frequency is called chemical shift

In-phase and Out of Phase TEs

<table>
<thead>
<tr>
<th>In-phase</th>
<th>Out of phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.69ms</td>
<td>2.2ms</td>
</tr>
<tr>
<td>1.38ms</td>
<td>4.4ms</td>
</tr>
<tr>
<td>2.76ms</td>
<td>8.8ms</td>
</tr>
<tr>
<td>5.52ms</td>
<td>17.6ms</td>
</tr>
</tbody>
</table>
DIXON METHOD

Based on Chemical shift of fat and water (3.5 ppm)

\[
S1 (TE1) = \text{in-phase image} = F + W
\]

\[
S2 (TE2) = \text{in-phase image} = F + W
\]

Fat image = \(S2 - S1 \)

Water image = \(S2 + S1 \)

Protocol

- Localizer
 - 3 plane gradient echo localizer
- TI-weighted Sequence
 - Gradient echo in and out of phase
- T2-weighted Sequence
 - Fat Saturation

Addition to the in- and out of phase T1 Protocol

- Localizer
 - 3 plane gradient echo localizer
- TI-weighted Sequence
 - Gradient echo in and out of phase
- T2-weighted Sequence

Protocol

- Localizer
 - 3 plane gradient echo localizer
- TI-weighted Sequence
 - Gradient echo in and out of phase
- T2-weighted Sequence

- Motion Correction
 - Respiratory triggered, Navigator based or Breath Hold
Protocol
- Localizer
 - 3 plane gradient echo localizer
 - SSFSE or FISP
- T1-weighted Sequence
 - Gradient echo in and out of phase BH
- T2-weighted Sequence
- Motion Correction
- Parallel Imaging - Image or k-space Based
 - GRAPPA, SMASH are Parallel imaging techniques
 - SENSE, PILS and ASSET are Image based Parallel imaging techniques
- Motion Correction
- Parallel Imaging
- Why 3D
- Why 3D
- Why 3D

Parallel Imaging - Image or k-space Based
- GRAPPA, SMASH are Parallel imaging techniques
- SENSE, PILS and ASSET are Image based Parallel imaging techniques
- Motion Correction
- Parallel Imaging

Protocol
- Localizer
 - 3 plane gradient echo localizer
 - SSFSE or FISP
- T1-weighted Sequence
 - Gradient echo in and out of phase BH
- T2-weighted Sequence
- Motion Correction
- Gadolinium Enhanced Sequence
- Non Dynamic
 - Can be 2D or 3D
 - Dynamic (3D preferred)
 - 3D Fast Gradient Echo BH
 - Fat saturated
 - Acquired slowly
 - Thin partitions
 - High resolution
 - Interpolated
- Why 3D

Protocol
- Localizer
 - 3 plane gradient echo localizer
 - SSFSE or FISP
- T1-weighted Sequence
 - Gradient echo in and out of phase BH
- T2-weighted Sequence
- Motion Correction
- Gadolinium Enhanced Sequence
- Why 3D

Protocol
- Localizer
 - 3 plane gradient echo localizer
 - SSFSE or FISP
- T1-weighted Sequence
 - Gradient echo in and out of phase BH
- T2-weighted Sequence
- Motion Correction
- Gadolinium Enhanced Sequence
- Why 3D

Protocol
- Localizer
 - 3 plane gradient echo localizer
 - SSFSE or FISP
- T1-weighted Sequence
 - Gradient echo in and out of phase BH
- T2-weighted Sequence
- Motion Correction
- Gadolinium Enhanced Sequence
- Why 3D