Cardiac Imaging at 3.0T

Scott B. Reeder, MD, PhD
SCBT/MR
Washington, DC
October, 2011

Department of Radiology
University of Wisconsin
Madison, WI
Disclosure

- UW receives support from GE and Bracco
- Spouse is an employee of GE

Off-label uses of Gadoliniumium contrast
Function/Motion with SSFP

Short Axis

4 Chamber Long Axis
First Pass Perfusion Imaging:
Myocardial Ischemia RCA Territory

Case Courtesy of H. Sakuma MD
Myocardial Infarction
Hibernating Myocardium

4 Chamber 3 Chamber 2 Chamber
Hibernating Myocardium
Physics of 3.0T MRI:

Increased SNR

- Higher field strength
 - Doubles SNR …
 - Increase spatial resolution
 - Opportunity to reduce scan time using parallel imaging with same SNR

- Decreases T2 and increases T1
 - Reduces SNR slightly
 - SSFP: SNR depends on T2/T1

Overall increase approximately 1.8x
Physics of 3.0T MRI:

Improved CNR

- Longer T_1 at 3T
 - Improved Background Suppression
 - Results in improved CNR of enhancing tissue
- 1st pass perfusion imaging
 - Improved detection of small defects
- Viability Imaging
 - Improved delineation of infarct extent

Most important benefit of 3T cardiac imaging
Saturation Recovery: *Perfusion*

- Overall Contrast between Enhancing and Infarct Improved because background T₁ longer at 3.0T
Perfusion Imaging at 3T
Inversion Recovery: Viability

1.5T
- Zero-Crossing: TI = 180-250 ms
- Signal Enhancement

3.0T
- Zero-Crossing: TI = 250-350 ms
- Signal Enhancement

- T_1 of enhancing tissue relatively unchanged at higher field strength – Oshinski et al
- Overall contrast between normal and infarct improved
Viability Imaging at 3T
Improved CNR at 3.0T

• Improved SNR alone improves CNR by 2x
• But also have improved contrast from T_1 effect
• Overall, Contrast to Noise Ratio improves by much larger factor, perhaps as high at 3x
 – Precise improvement difficult to measure
 – (Look for papers in the literature)
LV Pseudoaneurysm
LV Pseudoaneurysm

6mm slices
Cardiac Sarcoidosis at 3T
Tagging: Comparison of 1.5T vs 3.0T

1.5 T

early systole

peak systole

end diastole

3T
Physics of 3.0T MRI:

Bo Field Homogeneity

• Increasing field strength worsens magnetic field inhomogeneity due to increased susceptibility

• Largest impact
 – Steady-State Free Precession
 – Leads to Banding and Flow Artifacts
 • Proportional to Bo inhomogeneity and TR
Cardiac SSFP

Increasing TR / Increasing Field Strength
The Importance of Shimming

No Localized Shimming

With Localized Shimming
SAR: Dependence on Amplitude vs Duration of RF Pulse

Flip Angle = $\Delta T \, B_1$

$SAR \propto \Delta T \, B_1^2$

RF Pulse Duration
RF Amplitude - doubles at 3T

4 Fold increase in SAR at 3T!!
Function/Motion - Comparison

1.5 T (60 deg)
3.0 T (45 deg)
Summary

• Improved SNR with 3T
• Improved Contrast from longer T1
 – Improved Background Suppression
• Greatly improved quality of viability and perfusion imaging
• SSFP CINE imaging no longer a challenge
• 3T is our first line magnet for cardiac imaging