Almost everything you didn’t want to but need know about administering iodinated contrast media in patients with kidney disease

Brian Herts, MD
Professor of Radiology
Head, Section of Abdominal Imaging
Cleveland Clinic
Disclosure

Neither I nor my immediate family members have a financial relationship with any commercial interest or organization that may have a direct or indirect interest in the content of this presentation.
Why are we (you) here? (Objectives)

- Chronic Kidney Disease
- Contrast-induced AKI
- Screening for CKD
- Measuring renal function
- Guidelines for minimizing the risk of CI-AKI - who’s doing what and when?

Warning!! This presentation contains almost NO radiographic images
Chronic Kidney disease
• In 2002, NKF made a big effort to increase awareness of CKD publishing clinical guidelines
 – Definitions, evaluation, risk factors, and risk of loss of kidney function

• Chronic Kidney Disease (CKD)
 – Patients with kidney failure have annual mortality rate of 15%
 – Average life expectancy for 60 year-old
 – w/o CKD - 21 years
 – w/ CKD - 4.6 years
GFR and mortality rates

Chronic Kidney Disease - Staging

• Based on Glomerular Filtration rate
 – Stage 1 GFR ≥ 90 ml/min/1.73m² damage w/ normal GFR
 – Stage 2 GFR 60-89 ml/min/1.73m² mild decrease in GFR*
 – Stage 3 GFR 30-59 ml/min/1.73m² moderate decrease in GFR
 – Estimated 50% loss of renal function
 – Stage 4 GFR 15-29 ml/min/1.73m² severe decrease in GFR
 – Stage 5 GFR < 15 ml/min/1.73m² kidney failure

*May be normal for age
Chronic Kidney Disease

• Decrease in GFR is independently associated with an increased mortality

• Why does CKD matters to radiologists?
 – Risk factor for
 – Contrast induced acute kidney injury (CI-AKI)
 – Nephrogenic systemic Fibrosis (NSF)
 – 4 - 6.5% of outpatients who present for CECT have elevated creatinine (≥ 1.5 mg/dl in most labs)
 – But - We now live in a GFR world … relationship of Creatinine to GFR and CKD must be understood
CKD - definition & prevalence

• CKD defined as GFR < 60 ml/min/1.73m² for more than 3 months
• Or kidney damage documented by biopsy or proteinuria

• Prevalence
 – GFR ≥ 90 3.3%
 – GFR 60-89 3.0%
 – GFR 30-59 4.3%
 – GFR 15-29 0.2%
 – GFR < 15 0.2%

 Total prevalence: 4.5%
Minimizing CI-AKI (& NSF) requires identifying patients at increased risk

- Most radiologists use serum Creatinine
 - Wide variability in “cutoff”
 - 1.5 mg/dl – 35%
 - 1.7 mg/dl – 27%
 - 2.0 mg/dl – 31%

 Eicker BM, AJR 2006;186:1651

- Serum creatinine depends on body mass, wt, age, and sex

- Serum creatinine does not rise until GFR is reduced by 50%
Contrast-Induced Acute Kidney Injury (formerly Nephropathy)

Over 1000 medline articles last 10 years
Contrast-Induced Acute Kidney Injury

• Definition
 – Reduction in renal function following contrast administration *AFTER* exclusion of other etiologies
 – Generally defined by changes in serum creatinine
 – Increase by 0.5 mg/dl
 – Increase by 25% over baseline

• Usually transient, creatinine peaks at 24-72 hours
 – Resolved by 2-3 weeks
 – *Perhaps restrict to patients with baseline creatinine 1.0 mg/dl? (Toprak O Renal Failure 2007;29:387-8)*
 – 0.6 - 0.9 mg/dl increase is “CIN” without renal dysfunction
Contrast-Induced Acute Kidney Injury

• Pathophysiology
 – “not clear” - several theories, combination of events
 – Most commonly recognized theory is reduction in renal perfusion caused by direct cytoxic effects by iodinated contrast on the renal tubules

• Noteworthy
 – High-osmolar agents reduce RBC deformability - trapping RBCs in renal capillaries
 – Contrast aggravates hypoxic injury to outer medullary portion
 – Persson PB et al, Kid International 2005;68:14-22
Contrast-induced AKI

• Patients at highest risk for CI-AKI?
 (Toprak Am J Med Sciences 2007;334:283-290)
 – Chronic kidney disease
 – Dehydration
 – Diabetes
 – Age > 70
 – Nephrotoxic drugs
 – CHF
 – Large contrast volume

• Incidence of CI-AKI - reported 1-30% ...

• Most studies of CI-AKI are studies of ...
 – Intra-arterial injections (angiography, cardiac catheterization)
 – Contrast agent studies assessing high v. low, low v. iso-osmolar

• Few studies looking directly at CIN with intravenous contrast for CT scans
Sampling of a few CI-AKI studies with IV contrast

- **Katzberg & Barrett, Radiology 2007;243:622**
 - Risk of ‘CIN’ with IA admin 2.2x that of IV admin

- **Mitchell et al 2006**
 - 1224 ED CT PE patients
 - 4% ‘CIN’ - None renal failure (creatinine +3 mg/dl)

- **Barrett BJ, Invest Radiol 2006;41:815-821**
 - 166 pts with CKD
 - 4% of patients developed ‘CIN’

- **Josephson SA et al 2005**
 - 1075 patients CTA/perfusion
 - 4.8% ‘CIN’ by sCR + 0.5 mg/dl
 - 0.37% renal failure
Combination of Diabetes and CKD highest risk for CI-AKI

• Lautin AJR 1991
 – 38% DM & azotemic patients
 – 16% DM, non-azotemic patients
 – 2% non-DM, non-azotemic patients

• Parfrey NEJM 1989
 – Creatinine increase > 50% - 8.8% DM and CKD v 1.6% controls
 – Creatinine increase > 25% - 7% with CKD v 1.5% controls
 – Study conclusions:
 – “Little risk for DM without CKD”
 – Risk of ‘CIN’ for DM and CKD is 9%
Screening for patients with CKD & other CI-AKI risk factors
How should we screen for CKD?

- **Choyke et al. Techniques in Urol 1998;4:65**
 - Serum creatinine 1.7 mg/dl cutoff
 - Screening form - Age > 60, recent CM, Heart Disease, Gout, DM, HTN, Kidney disease / surgery, proteinuria, OTC pain relievers
 - 98% of patients with negative questionnaires had sCr below cutoff
 - Could eliminate 28% pf patients from measuring serum creatinine ($12k)

- **Tippins et al. Radiology 2000;216:481**
 - Renal insufficiency, DM, age, male, nephrotoxic drugs (Lasix, chemo)
 - Risk factors positive in 97% of patients with creatinine ≥ 2 mg/dl
Age and CKD, CI-AKI

- Serum creatinine is a poor screening test for renal failure in elderly (> 65 yrs) patients
- Creatinine > 1.7 mg/dl only 12.6% sensitive for CrCL (CG) ≤ 50 ml/min
 - Swedko PJ Arch Int Med 2003;163:356
- Age > 60 yrs - independent risk factor for CIN in angiographic procedures
Risk factors for CI-AKI

- **CI-AKI risk factors**
 - Dehydration
 - CHF
 - Diabetes
 - Kidney disease
 - Large contrast volume
 - Age > 70 yrs

- **CKD risk factors**
 - Age > 60 yrs
 - HTN
 - DM
 - CVD
 - Family history

- **AKI / CKD risk factors**
 - Nephrotoxic drugs
 - Renal surgery / infection
Measuring renal function
Methods of measuring renal function

Exogenous
- Inulin clearance
- 125I-lothalamate

- Accurate
- Precise*
- Inconvenient
- $\$Expensive

Endogenous
- Creatinine - serum
- Creatinine - urinary clearance
- Cystatin C

- sCr - inexpensive, widely available
- 24 hr CrCl - cumbersome, moderately expensive, inefficient, unreliable
Creatinine

• Filtered by glomeruli

• Also secreted by proximal convoluted tubules
 – Therefore measured Creatinine clearance will be greater than GFR

• Interference
 – Cimetidine & trimethoprim inhibit secretion, elevating serum creatinine and lowering CrCl w/o changing GFR

• Creatinine - Jaffe method (alkaline picrate) measures serum creatinine

• POCT testing is usually a whole-blood assay
 – Creatinine results will increase by 0.25 mg/dL per every 1 mmol/L of acetaminophen
Factors affecting serum creatinine levels

- Aging
 \[\uparrow \text{age} \quad \downarrow \text{sCr} \]
- Gender
 F \[\downarrow \text{sCr} \]
- Race
 AA \[\uparrow \text{sCr} \]
- Body habitus
 \[\uparrow \text{muscle} \quad \uparrow \text{sCr} \]
- Chronic Illness
 \[\downarrow \text{health} \quad \downarrow \text{sCr} \]
- Diet
 vegetarian \[\downarrow \text{sCr} \]
Creatinine-based equations to estimate renal function

<table>
<thead>
<tr>
<th></th>
<th>Cockcroft-Gault</th>
<th>MDRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population/Year</td>
<td>Canadian VA/1976</td>
<td>Multicenter/USA/1999</td>
</tr>
<tr>
<td>Source of pt population</td>
<td>Inpatients</td>
<td>Outpatients with CKD</td>
</tr>
<tr>
<td>Reference method</td>
<td>Creatinine clearance</td>
<td>125I-iothalamate clearance</td>
</tr>
<tr>
<td>Mean CrCl/GFR</td>
<td>73 ml/min</td>
<td>40 ml/min/1.73 m2</td>
</tr>
<tr>
<td>Variables in equation</td>
<td>Age, gender, weight</td>
<td>Age, gender, race</td>
</tr>
<tr>
<td>Mean age</td>
<td>? (range 18-92)</td>
<td>51 (s.d. 13)</td>
</tr>
<tr>
<td>Percent females</td>
<td>4%</td>
<td>40%</td>
</tr>
<tr>
<td>African American race</td>
<td>unknown</td>
<td>12%</td>
</tr>
<tr>
<td>Adjusted for BSA</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
MDRD v. Cockcroft-Gault

• C-G ‘less inaccurate’ for normal renal function

✓ MDRD more accurate in outpatients with CKD

✓ We are not looking for accuracy in patients with normal renal function, just need sensitivity for identifying CKD
 • Ergo use MDRD to screen for CKD in outpatients…

• Neither meant for inpatients with acute renal dysfunction
Outpatient CT - creatinine versus eGFR

- Correlated sCr with eGFR based on MDRD (4) and (6)
 - MDRD (4)
 - 6.2% with sCr > 1.4 mg/dl v.
 - 15.3% eGFR < 60 ml/min/1.73m²
 - MDRD (6)
 - 5.8% with sCr > 1.4 mg/dl v.
 - 17.3% eGFR < 60 ml/min/1.73m²

[Herts et al, Radiology, July 2008]
Patients with normal serum creatinine and reduced renal function

• 15.2% of outpts with sCr < 1.5 mg/dl had creatinine clearance (Cockcroft-Gault) < 50 ml/min

• 9.9% of patients with sCr < 1.5 mg/dl had eGFR < 60 ml/min/1.73m²
 – Herts et al, Radiology 2008
Cystatin C as a marker of GFR

✓ Constant rate of production
✓ Lack of effect of gender or muscle mass on generation
✓ Free filtration at the glomeruli because of its small size and basic pH
✓ (Almost) complete reabsorption and catabolism by the proximal tubule cells → not found in urine
✓ No renal tubular secretion
Administering IV contrast - guidelines
(Who’s doing what and when?)
<table>
<thead>
<tr>
<th>GFR > 60 mL/min/1.73m²</th>
<th>Normal or near-normal renal function. Extremely low risk. No specific prophylaxis or follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFR 30 to 60 mL/min/1.73m²</td>
<td>Moderate renal dysfunction and low-to-moderate risk for CIN.</td>
</tr>
<tr>
<td>GFR < 30 mL/min/1.73m²</td>
<td>Severe renal dysfunction and high risk for CIN</td>
</tr>
<tr>
<td>GFR < 15 mL/min/1.73m²</td>
<td>Renal failure. These patients are usually on dialysis</td>
</tr>
</tbody>
</table>
Canadian Association of Radiologists

• Inpatients: 0.9% NaCl at 1 ml/kg/hr x 12 hours prior and 12 hours following the procedure

• Same day / outpatients: 0.9% NaCl or NaHCO3 1-2 ml/kg/hr x 3-6 hours before and after

• Oral hydration: 250-500 ml of “Saline” (i.e. salty chicken soup) up to 2 hours before the morning of the procedure and the day before. Continue fluids for 24 hours after contrast.

• Acetylcysteine (AC) has been advocated to reduce the incidence of CIN; however, not all studies have shown a benefit. It is difficult to formulate evidence-based recommendations at this time. Its use may be considered in high-risk patients but is not considered mandatory
European Society of Uroradiology (ESUR)

• CI-AKI
 – Risks: eGFR < 60, dehydration, CHF, gout, Age > 70, Nephrotoxic meds
 – Recent eGFR < 7 days
 – Recommendations for eGFR < 60 & pts with increased risk of nephrotoxicity
 – Stop nephrotoxic drugs x 24 hrs before
 – IV hydration 1 ml/kg 6 hours before and after

Special thanks to Henrik Thomsen, MD
Additional publications affecting CC policy

 – 421 patients with eGFR < 60 ml/min/1.73m²
 – 6.5% developed sCr increase ≥ 25%, but
 ✓ < 1% of patients with eGFR > 45 ml/min/1.73m² developed sCR increase > 0.5 mg/dl
 – None required dialysis
 – Hospitalization and death (30-days) were unrelated to CI-AKI

 ✓ Outpatient risk extremely low, especially with eGFR > 45 ml/min/1.73m²
Cleveland Clinic guidelines (as of Jan 2009)

• Who gets screened?
 – Known chronic kidney disease
 – Diabetes Mellitus
 – Patient age greater than 60
 – Dehydration
 – Congested Heart Failure (CHF)
 – Multiple Myeloma
 – History of kidney surgery / Kidney neoplasm
 – Recent nephrotoxic chemotherapy or other nephrotoxic drugs

• Within 2 months or more recent per history
<table>
<thead>
<tr>
<th>eGFR (mg/ml/1.73 m²)</th>
<th>Conditions and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 60</td>
<td>Considered at no increased risk of CI-AKI</td>
</tr>
</tbody>
</table>
| 45-59 | w/ risk factors (diabetes, dehydration, drugs)
O_Oral hydration suggested, consider IV hydration individual basis
w/o risk factors
Oral hydration suggested (but not proven to be helpful) |
| 30-44 | w/ risk factors (diabetes*, dehydration, drugs)
IV hydration necessary
w/o risk factors
Oral hydration recommended |
| 15-29 | Consider alternative studies
IV hydration necessary |
| < 15 | Only if on dialysis or emergent indication |
Preventing CIN - what do we know?
IV hydration

- **Inpatients** - 1 mg/kg/hr for 12 hours both before and after contrast (coordinated with primary service)

- **Outpatients**
 - 150 ml/hr over 2-3 hours depending on patient
 - 0.9% normal saline solution
 - Bicarbonate solution (3 amps in 500 ml D5W)
 - Push p.o. fluids after (?)
High, Low and Iso-Osmolar contrast

- Studies conclusive that low osmolar non-ionic agents reduce the risk of CIN (large prospective studies, meta-analyses)

- Iso-osmolar (Iodixanol) v. low osmolar?
 - “Little experimental evidence” (Persson)
 - Major study quoted is in diabetic cardiac catheterization patients
 - Iodixanol v. Iopamidol
 - CIN rate “similarly low” (Barrett BJ Invest Radiol 2006;41:815)
 - Incidence of CI-AKI was 4% of renal impaired patients undergoing MDCT
Low versus Iso-Osmolar contrast
Meta-Analyses

• 16 studies w/ 2727 patients - McCullough et al J AM Coll Cardiol 2006;48:692
 – Benefit with iodixanol in CKD & CKD / DM patients - all IA

• 25 studies - Heinrich et al, Radiology 2009:250:68-86
 – 8 studies IV contrast, 17 studies IA contrast
 – Pooled - no significant difference
 – Subgroup analysis -
 – low risk with iodixanol compared with iohexol
 – No difference between iodixanol and other low osmolar agents (iopamidol, iopromide, ioversol, iomeprol, iobitridol)
N-Acetylcysteine (Mucomyst)(NAC)

- Scavenges oxygen free radicals (antioxidant) and vasodilatory

- Studies? Majority state NAC reduces risk
 - NAC + hydration prevents CIN in CKD pts (83 CECT pts; 2% v 21%) (Tepel M, NEJM 2000;343:180)
 - NAC 0.4% v 18.5% (meta-analysys) (Alonso A, Am J Kid Dis 2004;43:1)
 - NAC relative risk 0.62 (41 studies, meta-analysis)(Kelly AM, Ann Int Med 2008;148:284)

- 600 mg bid day before and day of the procedure is the dosing generally studied
Other renoprotective agents?

- Theophylline - relative risk 0.49 - but not statistically significant
- Saline - relative risk 0.62
- Bicarbonate - relative risk 0.12
- Ascorbic acid - relative risk 0.46
- Others without effect
 - Furosemide, mannitol, fenoldopam
Meta-analysis of drug prevention of CIN

• Kelly AM et al Ann Int Med 2008;148:283
 – 41 studies meeting criteria - 6379 patients receiving radiographic procedures involving contrast agents
 – 34 trials of patients with impaired renal function
 – 2 trials of patients with only normal renal function
 – Only 1 trial of CT, remainder cardiac catheterization!
IV hydration

• Normal saline v. half-normal saline v. bicarbonate solution
 – study of 1620 patients - CIN 1.4% overall
 – Lowest NSS (0.7%); DM patients saline 0% vs 5.5%; more than 300 ml
 – No difference for patients with significant CKD (creat > 1.6 mg/dl)
 – Another study NaHCO$_3$ better than NSS

Are we performing well-controlled studies?

• IV contrast studies are few

• Medline search - contrast, contrast medium, contrast media or radiocontrast & nephropathy, nephrotoxicity, or renal / kidney failure

• 40 of 3081 publications (1.3%) had patients IV contrast injected

• 2 of 40 (5%) had non-contrast control groups
 – Rao & Newhouse Radiology 2006;239:392
Variability in creatinine measurements?

• Newhouse et al, AJR 2008;191:376

 – Adults w/ serum creatinine of 5 consecutive days w/o contrast admin
 – 50% showed a creatinine change of ± 25%
 – 32,161 pts - 25% increase in creatinine occurred in 27% of patients with sCr 0.6-1.2 mg/dl

 – Limitations - not noted, but these are likely inpatients with a pre-selection bias for renal dysfunction (who else gets 5 consecutive creatinines); no abstraction of the electronic data for accuracy

• Take home point: Possible if not likely that some of the creatinine changes following contrast are unrelated to IV and IA contrast administration

 – REMEMBER THE DEFINITION OF CI-AKI!
Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomized controlled trials

- Smith GCS, Pell JP BMJ 2003;327:1458

- Results: We were unable to identify any randomized controlled trials of parachute intervention

- “Everyone might benefit if the radical protagonists of evidence-based medicine participated in a double blind randomized, placebo controlled cross-over trial”
Oral hydration??

• Few studies
 – IV hydration shown to be better than unrestricted water as oral hydration
 – One Asian study looking at water and salt tablets over 3 days, conclusion: uncertain benefit
 – One study no difference between oral hydration and 1/2 NSS x 6 hours

• General thoughts -
 – hydration before is likely better than after
 – Need salt / fluid loading rather than water alone
 – The question is how?
Contrast media and Dialysis

• Morcos S. European Radiology 2002
 – HD not helpful in preventing CI-AKI (CIN) when done immediately after
 – "the poor efficacy of hemodialysis in preventing contrast nephrotoxicity is related to the very rapid onset of renal injury after administration of contrast medium"
 – from: Br J Radiol 1998;71:357
 – Theoretical risks of elevated plasma [CM] include adverse effects on the CNS (lower seizure threshold and respiratory depression) due to either contrast media or uremia.

• "Immediate post procedure is unnecessary”
 – AJR 1994;163:969
 – Based on a study of 10 patients!
Metformin - purported risk is development of lactic acidosis after AKI

• Evidence?
 – Only a few series, intra-arterial & intravenous contrast
 – No evidence to support retesting after single I dose in patients with normal renal function
 – Goergen et al 2010

• Guidelines - variable
 – Manufacturer - d/c at the time of or prior to the procedure, withhold x 48 hours after and reinstituted only after function is normal
 – ESUR guidelines - eGFR 30-60 ml/min/1.73m² stop x 48 hrs before to 48 hrs after contrast
 – ACR - d/c x 48 hrs after contrast, resume usually w/o checking renal function (risk)
Preventing - or “minimizing the risk” of CIN & NSF

• General recommendations
 – Minimize dehydration - d/c Lasix other diuretics for 24 hours before study (if clinically feasible)
 – rarely done
 – IV hydration for those at greatest risk
 – N-acetylcystine inexpensive and may be beneficial
 – Oral hydration before with salt load in pt with mild risk factors
 – Determine for yourself the relative risk-benefit of CECT v. MR w/ Gd
 – Don’t do high dose or multiple Iodine or Gd studies
Summary / conclusions
Thoughts on research …

- Most studies are IA injections and without NC control groups
- Retrospective studies are pre-selected for patients with “issues”
 - Who else gets creatinine levels 2-4 days or more in a row?
- Need better controlled studies (NC control groups)
- Need studies of pts w/ normal and mildly reduced renal function
- Need better definition of outcome than an increase in creatinine
 - Clinically significant CI-AKI?
- True “risk” of CI-AKI after CECT is likely over-stated
Summary …

• GFR is now the preferred method for assessing patients for CKD, a major risk factor for CI-AKI

• … GFR / eGFR should be, but is not yet proven to be a better determinant of CI-AKI risk

• Screen patients using eGFR
 – 4-variable MDRD for outpatients
 – 6-variable MDRD for inpatients, chronic liver disease

• Keep an eye out for Cystatin-C as it may be a better indicator of renal function
Guidelines

- IV hydration only method consistently proven to lower the risk of CI-AKI
- Plan for patients with eGFR < 60 ml/min/1.73m²
- Worry about patients with eGFR < 45 ml/min/1.73m²
- N-acetylcysteine ‘can’t hurt’ and may even help but need not be mandatory
- And as always, consider each patient individually in the context of their health and the clinical indication
Selected References

Barrett BJ. Invest Radiol 2006;41:815-821
Choyke PL. Techniques in Urol 1998;4:65-69
Duncan. Nephrol Dial Transplant 2001;16:1042-1046
Elicker BM, AJR 2006;186:1651
Goergen SK. Radiology 2010;254:261-269
Herts.BR. Radiology 2008;248:106-113
Josephson SA. Neurology 2005;64:1805-1806
Kelly AM. Ann Int Med 2008;148:284
Lautin EM, AJR 1991;157:49-58
Mitchell. J Thrombosis and Haemostasis 2006;5:50-54
Persson PB. Kid International 2005;68:14-22
Rao QA. Radiology 2006;239:392-397
Swedko PJ Arch Int Med 2003;163:356
Toprak O. Renal Failure 2007;29:387-8
“Policies” versus “Guidelines”

THE RULES
They may be stupid, arbitrary and irritating, but god help you if you break them.