Radiology Reports of the Future are Here Now

Les Folio, DO, MPH, MSc, MAS
Col (ret) USAF
Lead Radiologist for CT, NIH CC

Adjunct Clinical Professor of Radiology, George Washington University Hospital
Disclosures, Disclaimers, Conflicts of Interest

Research agreement with Carestream Health (Rochester, NY)
The NIH Clinical Center PACS shown here
Government issued imaging patents (no royalties)
Author royalties (Springer)

This research was supported [in part] by the NIH Clinical Center Intramural Research Program

The content is the responsibility of the presenter and does not necessarily represent the official views of the National Institutes of Health
Overview

- Consistent quantification is paramount in oncologic reporting
 - Should be sufficient to determine therapeutic response
- We developed tools and workflows to accomplish this
 - Multimedia reporting, digital data exporting
 - Additional goal of eliminating handwriting; manage digitally
- Share successful experience applying these tools and workflows
 - Some generalizable to benefit those awaiting advanced tools
- Introduce other medical specialties using multimedia reporting
Improved Reporting: Technology and Workflow

• Within PACS tumor data management (eliminate handwriting)
 – Carestream Health v 12.0 (Rochester, NY)
 – We have scripted open-source interface* manage exported data
 – Although vendor dependent, workflow/ script may be generalizable

• Workflow: Radiologists measure previously linked annotations
 – Reports more concordant with Radiologist Assistant (RA) help
 – RA verifies baseline date and target lesions, measures, relates

• Ideal: radiology report includes RECIST calculations same day

Experience with Multimedia Radiology Reporting

- We have been using now for over two years (started Feb 2015)
- More efficient process, fewer errors, duplicate efforts
- Radiologist assistants measure/ close communication gaps
 - They can solve tedious measurement discrepancies
 - Fewer radiologist interruptions for measurements (hours saved daily)
- Result: more informative, interactive radiology reports
- Can allow for oncologists to have same day tumor response
- Tumor data on all patients in trial batch exported for analysis
NIH Clinical Center Oncologist, Radiologist Survey*

• We aimed to improve prior tumor assessment “process”
 – Surveyed radiologists and oncologists preferences on reporting
 – Prior schema was disjoint, inconsistent, tedious, inefficient

• We found oncologists often measure lesions independently
 – Or search for measurements buried in our prior text only reports
 – It was tedious trying to match target lesions on images in PACS

• Survey verified oncologists and radiologists prefer hyperlinks
 – The report hyperlinks take clinicians to annotated measurements

Are Radiologists Reports Adequate for Oncology Assessment?

Folio LR. Quantitative Radiology Reporting in Oncology: Survey of Oncologists and Radiologists. AJR. 2015
Radiologists’ Satisfaction with Current Clinical History

Question: Current clinical history on imaging requests is satisfactory for radiologists to provide tumor assessments.
Question: How would you prefer tumor measurements presentation in radiology reports?
FINDINGS:

Chest CT:
Lungs, pleurae: Unchanged lung nodules for example right upper lobe (0.8 cm x 0.4 cm) (series 4, image 84)
Mediastinum, heart, great vessels: Unchanged mediastinal adenopathy for example subcarinal (2.5 cm x 1.4 cm) (series 2, image 27) and right hilar adenopathy for example (5.1 cm x 2.4 cm) (series 2, image 32) and (2.1 cm x 1.4 cm) (series 2, image 25)

Abdomen CT:
Lymph nodes, abdominopelvic vascular: unremarkable
Liver, spleen, biliary, gallbladder, pancreas: unremarkable
GU Kidneys, ureters, adrenal glands: unremarkable
GI Small and large bowel, mesentery, peritoneum: unremarkable
Pelvic CT: Central pelvis, sidewalls: Unchanged anterior pelvic wall mass.
Osseous structures, spine, body wall, soft tissues: unremarkable

IMPRESSION:
1. Unchanged lung nodules
2. Stable mediastinal and hilar adenopathy/masses
3. Unchanged anterior pelvic wall masses
4. No evidence of new soft tissue mass
RECIST 1.1

<table>
<thead>
<tr>
<th>Evaluation of target lesions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response (CR)</td>
<td>Disappearance of target lesions (LN<1cm)</td>
</tr>
<tr>
<td>Partial Response (PR)</td>
<td>≥30% decrease from baseline sum of target lesions size</td>
</tr>
<tr>
<td>Progressive Disease (PD)</td>
<td>≥20% increase from baseline or best response + absolute increase ≥ 5mm on target or Non target lesions / New lesions</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>Neither CR or PD</td>
</tr>
</tbody>
</table>

Radiology Report Impression: “Stable metastatic lesions”

Patients can get conflicting messages in Patient Portal

This number is what “counts”
FINDINGS:

Chest CT:
Lungs, pleurae: Unchanged lung nodules for example right upper lobe (1.9 cm x 1.5 cm) (series 4, image 81)

Minimizes crosscheck

Metadata automatically included
x,y,z location, who measured, when, relation and designation, name, lesion type
Body CT Hyperlink Usage

PACS upgrade

Feb 14% 44% 62% 69% 88%
Mar 5% 44% 62% 69% 88%
Apr 69% 88%
May 2015
Jun 2016
April

Feb
Mar
Apr
May
Jun
April 2015
April 2016

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Improved Target Lesion Concordance

- Multimedia radiology reports are more concordant (78%) with oncologist records over text only reports (52%)
 - Of note, oncologist records are used to determine therapeutic response (all that matters)

* Machado L, Folio L. Multimedia Radiology Radiology Reports with Hyperlinks Improve Target Lesion Selection and Measurement Concordance in Cancer Trials. AJR.
Improved Efficiency

It was about 3 times faster for our radiologist assistant to extract measurements from multimedia reports than traditional text only reports.

\[
P = 0.032, \text{ } N = 295
\]
Integrated Radiologist, Radiologist Assistant Oncology Dictation Workflow

- On baseline; radiologists select index lesions (later verified)
- Radiologists agreement to measure previously measured lesions
- Occasionally keep report preliminary while awaiting measurements
 - From radiologist assistant, radiologist or oncologist
- Saves radiologist time while preventing measuring of unspecified lesions
- In background: CIPS radiologist, RA and technologist
 - Meet with oncologists to agree on baseline target lesions
 - Also agree on criteria to use and measurement styles
 - Helps close communication gaps
 - Save key images and/ or presentation state

Tirkes T. Response criteria in oncologic imaging: review of traditional and new criteria. Radiographics. Sep 2013
Outdated and Revised workflows

Outdated workflow:
- Radiologists measure “random” index lesions
- Oncologists select target lesions independently
- Oncologists consult radiologists to verify/measure targets
- Oncology staff type measurement data into EMR
- Oncology staff handwrite measurement data on RECIST worksheets
- Data managers retype data into Research Clinical Database

Revised workflow:
- Oncologists & Radiologists agree on targets selected at baseline exam
- Radiologist assistant verify/relate targets on follow-up exams for graphing and exportation
- Oncology staff export and upload Measurement Data to database using ENABLE
Data Management Optimization

• AJR Survey* showed tumor measurement data was handwritten
 – Increasing potential of transcription errors, duplicated efforts
• Most oncologists surveyed (93%) would prefer to manage measurements and calculations within PACS at the SSOT
• We created the ability to export to RECIST forms and databases**
 – SSOT: Single Source Of Truth (PACS)
 • Original measurement carried through workflow
 – It is where the radiologist (or radiologist assistant) measures

* Folio LR. Quantitative Radiology Reporting in Oncology: Survey of Oncologists and Radiologists. AJR. 2015
Limitations

- Technology and/or workflows may not be generalizable
 - Not all centers have advanced systems or available staff
 - However, there may technical and workflow options
- Annotations on images can be distracting
 - For radiologists or ordering providers, can be toggled off however
- Our radiologists reports do not replace tumor assessments
 - But near 100% concordance helps everyone involved
- Vendor dependent technologies, compatibility issues
 - Awaiting AIM* and other annotation sharing standards (DICOM4IQ**)?
- Data management interface requires programing to modify

* Mongkolwat P. NCIP AIM Model J Digit Imaging. 2014
** Fedorov A, Rubin D, et al. Interoperable Communication of Quantitative Image Analysis Results Using the DICOM Standard. RSNA 2016
Tumor and other Quantification, Workflow, Multimedia Digital Systems

- Agfa Healthcare (Mortsel, Belgium)
- Carestream Health VuePACS v 12.0 with LMA
- Cerner Clinical Imaging (Kansas City, MO)
- Click*View 7i Analytics
- ePAD (Stanford University)
- Median Technologies (Woburn MA)
- Mint Lesion™ (Mint Medical: Dossenheim, Germany)
- Medstreaming (Redmon, WA) ‘All in one’ vascular information system
- Multi-Modality Tracking Tool (MMTT) application (Phillips Healthcare, IntelliSpace Portal, Koninklijke Philips Electronics N.V.)
- Orpheus Medical (New York, NY)
- OneDx (Westport, CT)
- Precision Imaging Metrics; MGH (Dana Farber)
- Lexmark Healthcare’s solutions (Lexington, KY)
- SCC's Genetics Information Systems Suite® (Clearwater, FL)
- Sectra Medical Systems (Sweden)
- Siemens Syngo.via for Oncology
- Eclipse™ Treatment Planning System. Varian

Some now with Hyperlink Ability
UVA multimedia report referred to NIH CC on a cancer patient
Summary

• Consider our radiology end product in oncologic reporting
 – Sufficient quantification to determine therapeutic response
• We therefore aim to produce consistent quantitative reports
 – We co-developed tools to accomplish this; but also workflows
 • Multimedia reporting, digital data exporting (aim: no handwriting)
• Shared successful experience applying these tools and workflows
 – Hopefully generalizable to benefit those without needed tools
• Introduced other medical specialties using multimedia reporting