DWI
in Body Applications

Ihab R. Kamel, M.D., Ph.D.

ikamel@jhmi.edu

Associate Professor
Clinical Director, MRI
Department of Radiology
The Johns Hopkins University
School of Medicine
Outline

• What is diffusion imaging?
• Why diffusion imaging?
• What are the current applications?
• What is new in diffusion?
“There is an extraordinary opportunity for DW-MRI to evolve into a clinically useful method that is useful for pharmaceutical drug development and for predicting therapeutic efficacy”

Outline

• What is diffusion imaging?
• Why diffusion imaging?
• What are the current applications?
• What is new in diffusion?
What is diffusion?

- Measures motion of water molecules (Brownian motion)
- Due to thermal agitation
- Influenced by:
 - cellularity
 - intracellular elements
 - membranes
 - macromolecules
Outline

• What is diffusion imaging?
• **Why diffusion imaging?**
• What are the current applications?
• What is new in diffusion?
Why Diffusion Imaging?

- Non-invasive
- Intrinsic (no contrast needed)
- Fast (BH)
- Large anatomic coverage
- Quantifiable (ADC value)
- Tissue-specific
Diffusion Imaging Technique

- TR/TE 3000/77
- B value = 50, 750
- Averages = 1
- Resolution = 128 x 128
- FOV = 340 x 255
- Acquisition Time = 23s
- Slices = 20
- ST = 8 mm
Outline

• What is diffusion imaging?
• Why diffusion imaging?
• What are the current applications?
• What is new in diffusion?
Current Applications

Liver

I. Focal lesions:
 1. Improved lesion detection
 2. Better lesion characterization
 3. Tumor response to treatment

II. Parenchymal disease:
 Hepatic fibrosis/inflammation

Others: Kidney, pancreas, breast, uterus, prostate
1. Lesion Detection

T2 DWI HAP
2. Lesion Characterization

Qualitative Assessment

<table>
<thead>
<tr>
<th>SI high b-value</th>
<th>SI ADC</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>low</td>
<td>high cellularity</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>T2-shine</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>low cellularity</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
<td>fibrosis</td>
</tr>
</tbody>
</table>

3. Tumor Response
Current Response Criteria

• Tumor size (WHO, RECIST*)
 – Only published criteria
 – Not useful after loco-regional therapy

• Tumor enhancement (EASL**)
 – Enhancement = viability
 – May not be useful in hypovascular mets

*Therasse P et al, JNCI (2000); 92: 205-216
**Bruix et al. J. Hepatology (2001); 35:421-430
ADC: Biomarker of Response

• Rationale:
 – Inverse correl. between ADC & tumor cellularity
 • Gauvain KM et al, AJR (2001) 177: 449
 – Change in cellularity >> change in ADC
 • Guo Y et al, JMRI (2002) 16: 172
 – Change in ADC occurs before change in size
 • Kamel IR et al, JVIR (2006) 17: 505
 – ADC correlates with necrosis in Vx2 rabbit model
 – f map may predict survival
 • Moffat B et al, PNAS (2005) 102: 5524
ADC: Biomarker of Response

• **Image Analysis**
 - Mean tumor ADC: Simplest
 • Global change
 • Kamel IR et al. JVIR (2006) 17: 505
 - Histogram analysis:
 • Fractional volume above/below certain threshold
 • Koh DM et al. AJR (2007) 188: 1001
 - Functional diffusion map: Most challenging
 • Allows voxel-by-voxel analysis, regional response
 • Moffat B et al. PNAS (2005) 102: 5524
Can ADC Predict Response?

3 wks after Treatment

- Functional diffusion map stratification correlated with OS in brain glioma (Hamstra DA et al, PNAS 2005; 102:16759)

Before Treatment

- Lower pre-treatment ADC >> better response of colorectal mets (Koh DM et al, AJR 2007; 188:1001)
II. Parenchymal Disease

- Liver fibrosis and inflammation
- BH single shot EPI: conventional DWI and diffusion tensor imaging
- B= 0 and 500
- Chronic liver disease (n = 31), normal volunteers (n = 13)
- Conventional DWI better than DTI
- ADC ≤ 1.30 x 10^-3 mm²/sec
- Predicting stage ≥ 1 fibrosis and inflammation, RUC was 0.848 and 0.825, resp.

Taouli et al, *JMRI* (2008) 28; 89-95
Outline

• What is diffusion imaging?
• Why diffusion imaging?
• What are the current applications?
• What is new in diffusion?
• NCI-sponsored consensus at ISMRM 2008
 – Recommended DWI as a biomarker in clinical trials
 – Should be compared with histology
 – Use 2 b values (>100 and 500-1000 mm²/sec)
 – Free breathing is superior to gating technique
 – Base line reproducibility studies should be performed
 – Standardize acquisitions and image processing

Padhani et al, Neoplasia (2009) 11, 102-125
There is an extraordinary opportunity for DW-MRI to evolve into a clinically useful method that is useful for pharmaceutical drug development and for predicting therapeutic efficacy.

DWI: Challenges

- Rapid technology evolution
- Divergence between vendors
- Lack of standards for measurements and analysis
- Lack of understanding of changes at microscopic level
- Multiexponential decay affects calculated ADC
- Need for tissue-mimicking phantom
- Incomplete validation and documentation of reproducibility
DWI: When to image after TACE?

Kamel et al. Radiology (2009) 250; 466-473
DWI: Other Organs

• Myometrial invasion in endometrial ca
 – Lin et al, Radiology (2009) 230;784-792

• Detecting gallbladder ca
 – Sugita et al, Eur Rad online Feb 2009

• Detecting esophageal ca
 – Sakurada et al, Eur Rad online Feb 2009

• Breast: tissue adjacent to breast ca
 – Yili et al, BMC Cancer (2009) 9; 18

• Adrenal tumors
 – Tsushima et al, JMRI (2009) 29; 112-117
DWI: Whole Body Diffusion

72 year old with colon cancer metastases

Courtesy: M. A. Jacobs, PhD, Johns Hopkins
DWI: Whole Body Diffusion

72 year old with colon cancer metastases

Courtesy: M. A. Jacobs, PhD, Johns Hopkins
3T: Reproducibility of ADC

- 20 healthy male volunteers
- 5 axial abdominal acquisitions
- Repeated after 147 +/- 20 days
- ADC measured in 5 locations: liver, spleen, pancreas (head, body, tail)
- Calculated mean ADC and coeff. of variability (CV)
- CV = 14%

DWI @ 3T

BH; B: 0 and 750

BH; B: 50 and 600

FB; B: 0 and 750

FB; B: 50 and 600
Conclusions

• DW-MRI is a functional imaging technique that is linked to lesion aggressiveness.
• It has a number of potential roles including detection and characterization of cancers.
• DW-MRI is a potential imaging biomarker for the assessment of tumor response to therapy.
• Several challenges exist and need to be addressed.