CT Urography

Stuart G. Silverman, M.D.
Professor of Radiology
Harvard Medical School
Director, Abdominal Imaging and Intervention
Brigham and Women’s Hospital
Boston, MA

Ureter
CT Urography

Stuart G. Silverman, M.D.

Disclosure of financial relationship with relevant commercial interest

Siemens Medical Solutions
Malverne, PA – Consultant

Ureter
Outline

• CT urography technique
• Ureter variants
• Ureter: benign vs malignant
• Dual energy applied to ureter
• Summary
BWH CTU Protocols

Patients > 40 years old

- Three phase – UP (abdomen and pelvis), NP (kidneys only), EP (abdomen and pelvis), supplemented with 10 mg furosemide IV

Patients < 40 years old

- Split bolus, two phase – abdomen and pelvis, supplemented with 250 cc saline IV
BWH CT Urography Protocol

64 – Channel MDCT with 3 phases

<table>
<thead>
<tr>
<th></th>
<th>Unenhanced</th>
<th>Nephrographic</th>
<th>Excretory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Abd/Pel</td>
<td>Kidneys</td>
<td>Abd/Pel</td>
</tr>
<tr>
<td>Delay</td>
<td>--</td>
<td>100 s</td>
<td>10 - 15 min</td>
</tr>
<tr>
<td>Collimation</td>
<td>1.2 mm</td>
<td>1.2 mm</td>
<td>0.6 mm</td>
</tr>
<tr>
<td>Axial Recon/Incr</td>
<td>3/3</td>
<td>3/1.5</td>
<td>3/3</td>
</tr>
<tr>
<td>Post Processing</td>
<td>--</td>
<td>--</td>
<td>Cor / Sag / MIP / CPR / VR</td>
</tr>
</tbody>
</table>

Iodinated contrast material (300 mgI/ml); 0.5 s rotation time

AEC w/ quality reference 200 mAs, 120 kVp

Silverman et al Radiology 2006
BWH CT Urography Protocol

64 – Channel MDCT with 3 phases

<table>
<thead>
<tr>
<th></th>
<th>Unenhanced</th>
<th>Nephrographic</th>
<th>Excretory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Abd/Pel</td>
<td>Kidneys</td>
<td>Abd/Pel</td>
</tr>
<tr>
<td>Delay</td>
<td>--</td>
<td>100 s</td>
<td>10 - 15 min</td>
</tr>
<tr>
<td>Collimation</td>
<td>1.2 mm</td>
<td>1.2 mm</td>
<td>0.6 mm</td>
</tr>
<tr>
<td>Axial Recon/Incr</td>
<td>3/3</td>
<td>3/1.5</td>
<td>3/3</td>
</tr>
<tr>
<td>Post Processing</td>
<td>--</td>
<td>-- Cor / Sag / MIP / CPR / VR</td>
<td>--</td>
</tr>
</tbody>
</table>

- Iodinated contrast material: 370 mg/ml; 0.5 s rotation time
- AEC w/ quality reference 200 mAs, 120 kVp

Silverman et al Radiology 2006
IV Furosemide Withheld

- Furosemide allergy
- Sulfa allergy
- SBP < 90 torr

IV Saline is suitable alternative
BWH CT Urography Protocol

64 – Channel MDCT with 3 phases

<table>
<thead>
<tr>
<th></th>
<th>Unenhanced</th>
<th>Nephrographic</th>
<th>Excretory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Abd/Pel</td>
<td>Kidneys</td>
<td>Abd/Pel</td>
</tr>
<tr>
<td>Delay</td>
<td>--</td>
<td>100 s</td>
<td>10 - 15 min</td>
</tr>
<tr>
<td>Collimation</td>
<td>1.2 mm</td>
<td>1.2 mm</td>
<td>0.6 mm</td>
</tr>
<tr>
<td>Axial Recon/Incr</td>
<td>3/3</td>
<td>3/1.5</td>
<td>3/3</td>
</tr>
<tr>
<td>Post Processing</td>
<td>--</td>
<td>-- Cor / Sag / MIP / CPR / VR</td>
<td></td>
</tr>
</tbody>
</table>

Iodinated contrast material (370 mgI/ml); 0.5 s rotation time
AEC w/ quality reference 200 mAs, 120 kVp
McTavish et al Radiology 2002
BWH CTU Protocol for pts < 40 y.o.

Split dose 370 mg/l/ml

CM (40 cc) (80 cc)

Unenhanced

Range Abd/Pel

Delay --

Collimation 2.5 mm

Axial Recon/Incr 3/3

Post Processing --

Saline 2.5 mm 3/3

Cor / Sag / MIP / CPR / VR

Obtaining NP and EP during one scan reduces radiation dose

Modified from Chow and Sommer AJR 2001
Chai et al Australas Radiol 2001
Indications: Full CT Urogram

- Hematuria
- Suspected urothelial cancer (e.g., positive urine cytology)
- Follow-up urothelial cancer
- Hydronephrosis etiology
- Others?
Urinary Tract CT Protocols

- Flank pain -> UP ("Stone protocol")
- Renal mass -> UP, NP, Excretory (Kidney)
- Congenital anomalies -> Excretory
- Partial nephrectomy -> AP, VP, Excretory
- Post-operative Complications -> Excretory
- Trauma -> NP, Excretory

UP = unenhanced phase; NP = nephrographic phase; AP = arterial phase; VP = venous phase

None is a CTU protocol!
Ureteral Mass-like findings

- Lumenal – stone, clot, myceloma, sloughed papilla, mucus
- Mucosal – tumor, stricture
- Mural – ureteritis cystica, met, leiomyoma
- Extramural – RPF, LN, mass
More Ureteral Ca Look-Alikes

- Endometriosis
- Leukoplakia
- Cholesteatoma
- Malacoplakia
- Tuberculosis
Is CTU Good in detecting UT TCC?

- UT TCC is uncommon
- UT TCC occur in up to 6.5% of pts w/ known or prior bladder ca.
- Upper tract needs to be evaluated at the time bladder cancer is diagnosed and periodically in surveillance.

Is CTU Good in Detecting UT TCC?

82 (3%) positive CT urograms (n=2602)

PPV: 43/82 = 52%

Sadow et al AJR (in press)
Is CTU Good in Detecting UT TCC?

PPV = 81%
CTU + True +

PPV = 0%
Large Mass (>5 mm)

PPV = 48%
Small Mass (<=5 mm)

Sadow et al AJR (in press)
Is CTU Good in Detecting UT TCC?

- The PPV (52%) of CTU for detection of upper tract malignancies is moderate, as benign findings mimic cancer.
- Large (> 5 mm) masses are likely to be cancers.
- Small (≤ 5 mm) masses are unlikely to be cancers.
- Urothelial thickening is just as likely to be benign as malignant.

Sadow et al AJR (in press)
Imaging Algorithm for Hematuria

Renal cyst → MDCTU → MRI

Renal mass → MDCTU → MRI

Normal

Urothelial abnormality

Retrograde Pyelogram

Note: Retrograde pyelography may still be needed when CTU is positive...
Single Energy CT

CT-value (HU)

Materials differentiated based on attenuations

One x-ray tube, one acquisition...

Courtesy Christianne Leidecker SMS
Dual Energy CT

Dual source method...

- Two x-ray tubes – kVp same or different
 - Tube A = 140 kVp, FOV= 50 cm
 - Tube B = 80 kVp, FOV 26 cm (33 cm)
Dual Energy CT

X-ray beams are polychromatic!

Number of photons x 10^17

- 140 kVp, mean 76 keV
- 80 kVp, mean 56 keV

Mean Energy:
- 56 keV
- 76 keV

Peak Energy:
- 140 kVp
- 80 kVp

Photon Energy (keV)
Basic concepts...

- X-ray attenuation is determined by two independent absorption processes, Compton scatter and photoelectric effect.

Photoelectric effects are greater at lower kVp and soar at the k-edge.
Basic concepts...

- Total attenuation decreases with increasing energy.
- Attenuation depends on energy (keV) and material density.
- X-ray absorption depends on the inner electron shells.
- DECT is sensitive to atomic number and density.
Dual Energy CT

Photon Energy (keV)

0.01 0.1 1 10 100 1000

Attenuation (cm²/g)

Iodine
Calcium
Water
Fat

56 keV
76 keV

Large increase
Small increase
Dual Energy CT

Basic concepts...

- DECT can be used to determine concentration of three known materials
- DECT cannot be used to determine the chemical composition of an unknown material
Dual Energy CT - Stones

HU @ 80 kV

HU @ 140 kV

Iodine

Soft Tissue

Fat

+200

+65

0

-100

-90

0

+60

+100
Stone Composition – Why?

- Uric acid stones managed with urine alkalinization; prevented with allopurinol
- Calcium stones managed with SWL, PCNL, or ureteroscopy; prevented with thiazides
- Calcium monohydrate (high HU and homogeneous), brushite, and cystine (particularly >15 mm) stones are resistant to ESWL

Kim et al Urol Res 2007
Perks et al Urology 2008
CT Attenuations – Why not?

- Overlapping attenuation ranges
- Stones are typically mixed
- HU measurements are variable and dependent on CT technique (including dose, collimation, section thickness)

Kambadakone et al RadioGraphics 2010
Dual Energy CT - Stones

- Attenuation depends on density, atomic number, and the energy of the X-ray beam.
- The higher the atomic number, the higher the attenuation.
- Calcium oxalate (CaC$_2$O$_4$), calcium phosphate (Ca$_3$(PO$_4$)$_2$), and cystine (C$_6$H$_{12}$N$_2$O$_4$S$_2$) contain elements with high atomic numbers (Ca = 20, S = 16, P = 15) or ‘heavy’ chemical elements.
- Uric acid (C$_5$H$_4$N$_4$O$_3$) and struvite (MgNH$_4$PO$_4$·6H$_2$O) are composed of elements with low atomic numbers, or ‘light’ chemical elements (H,C,N,O).

Thomas et al. Eur Rad 2009
Primak et al. Acad Rad 2007
Dual Energy CT - Stones

- As a consequence, uric acid (UA) stones have higher attenuations at higher kVp than at lower kVp, whereas non-UA stones have a higher attenuation at lower kVp than at higher kVp.
- Most non-UA stones contain calcium.
- A three-material decomposition first assumes that all voxels contain a mixture of water (urine), calcium, and UA.
- If the voxel exhibits DE behavior similar to calcium, it is assigned a blue color, UA red, and voxels that show a linear density at both tube potentials remain gray (Graser Invest Rad 2007).

Thomas et al Eur Rad 2009
Primak et al Acad Rad 2007
Dual Energy CT - Stones

- Commercially available software uses a three-material decomposition algorithm (Syngo DE Viewer, SMS).

- Stone is considered a mixture of a hypothetical "pure" stone with no pores (such a stone would have high attenuation) and the material that fills the pores, urine.

- On a plot of attenuations @ 80 kVp vs 140 kVp, a real stone has to lie somewhere, depending on its porosity, between urine and a pure stone.

Primak et al Acad Rad 2007
Dual Energy CT - Stones

Calcium stones have more attenuation at lower kVp, hence DE ratio (HU @80 kVp / HU @ 140 kVp) will be higher.

Hence the slope can be correlated w/ stone composition.

All stones of a particular type will be represented along this line, depending on the porosity...

"Urine"

"Pure" stone

Primak et al Acad Rad 2007
Dual Energy CT - Stones

Stones below angle bisector are characterized as UA stones, above as non-UA or calcium stones.

"Pure" calcium stone

"Pure" uric acid stone

Single average slope represents different calcium-containing stones

"Urine"

Primak et al Acad Rad 2007
Dual Energy CT - Stones
Summary

- MDCT urography supplemented with IV furosemide can be used to evaluate the ureter.
- Thin (3 mm) sections and multiplanar reformations, particularly CPR, are helpful when evaluating the ureter.
- Beware of benign entities that mimic cancer.
- DECT can be used to differentiate urate stones from non-urate stones.