MPRs, MIPs and VR in Abdominal applications

Brian R. Herts, MD
Professor of Radiology
Imaging Institute &
The Glickman Urological and Kidney Institute
Cleveland Clinic
Disclosure: Research Grant for investigating dose and dose reduction in CT with Siemens Medical Solutions
Objectives

• Define the different 2D and 3D image formats
 • advantages and disadvantages

• Common (and some less common but practical) uses of MPRs, MIPs and 3D techniques
Images are stacked to form a volume data set
Volume Data then Manipulated by Computer

- Cut volume in different planes
- View data from different angles
- Emphasize or de-emphasize data
 - Location within the volume
 - CT HU density / MR signal intensity
 - Assigning relative values to density / intensity
 - Apply ‘lighting’ or shading
Why do 2D & 3D post processing?

- View information not easily shown by planar images
 - Data not always projects in the acquisition plane
- Convey information in a format easily understood
 - Simulates angio, colonoscopy, IVU - better communication
- Replace costly or riskier studies
 - Diagnostic angiography
- Open new markets
 - New types of scans: CT Colon / Coronary CTA
 - Added value - increase referrals
Basic types of 2D & 3D image Formats

• Two-dimensional (2D) formats
 • Multiplanar reformations (MPR)
 • Curved planar reformations
 • Maximum intensity projection (MIP)
 • Minimum intensity projection (MinIP)

• Three-dimensional (3D) formats
 • Surface shaded displays (SSD)
 • Volume rendering (VR)
 • Perspective surface or volume rendering

• Map projections
Common Uses for MPRs, MIPs and 3D

• Most common MPR: coronal or sagittal MPR in routine scanning

• Most common MIP: CTA / MRA

• Most well-known 3D: perspective VR/SSD in CT colonography / virtual colonoscopy
Abdominal uses of 2D and 3D imaging

- CT / MR Angiography - minimally invasive replacement for diagnostic angiography
 - Aortic and iliac artery aneurysms / stenosis
 - Living renal transplant donors
 - Mesenteric angiography
 - Renal artery stenosis
 - Nephron-sparing renal surgery
 - Liver transplant pre-op/post-op assessment
Non-vascular Abdominal 2D and 3D

- Diagnostic evaluation
 - CT enterography, SBO
 - CTU, renal stones
 - Adrenal (nodules vol avg, adrenal v renal lesion)
 - Diaphragmatic hernia / trauma
- “Virtual endoscopy”
 - CT colonography
 - Uncommon / investigational
 - Virtual cystoscopy
 - Virtual angioscopy
Overlap & thinner slices – less artifact

- 3 mm slice thickness
- 3 mm interval
- 1 mm slice thickness
- 0.8 mm interval
Use High Contrast Differentials

- Greater differences between the structures of interest and the background allows easier separation of data
- Main “contrast agents” for 3D provide a difference from soft tissues
 - Contrast – CT Angiography (350 or 370 mgI/ml agents)
 - Air / CO₂ - colon, bronchi, bladder
 - Calcium in bones – skeletal applications
Multiplanar and Curved Planar reformations

- Simplest 2D format
- Planes placed in any orientation through the volume
- Advantages
 - maintains all gray scale information (calcium and fat)
 - Allows viewing along non-acquisition planes without additional imaging (radiation)
- Disadvantages
 - 2-Dimensional – need a series of images to retain all data
 - No depth information
 - Resolution traditionally less than non-axial planes
MPR cuts volume along any plane . . .
CT Enterography

- CTE protocol axial and coronal MPRs
- Mesenteric vessels and LNs are nicely shown coronal
Small Bowel Obstruction

Closed-loop SBO
Sclerosing mesenteritis

Coronal MPR
Back / flank pain - “r/o kidney stone”

... after recently placed IVC filter!
Coronal MPRs for diaphragmatic hernias
Curved planar reformations (CPR)

- Draw bendable plane from reference images
- Trace along vessels, spinal column, ureter
- Limitations
 - Curved planar reformations have no restrictions
 - Only include data “requested”
 - Can be misleading
Renal artery stent patency

- Coronal MPR
- Curved MPR
Maximum Intensity Projection (MIP)

- Projects through the volume
- Displays only the highest HU value along line of ‘sight’
- Uses data from the entire volume or a “slab” volume but selects only desired data (max on min HU)
- Common uses: CT/MR angiography, MRCP
- Typically combined with a series of rotating images to give ‘3d’ location, but opposite views are similar not complimentary
Maximum Intensity Projection (MIP)

- **Advantages**
 - Angiographic- or ERCP-like image
 - Maintains gray scale info - calcium is visible
- **Disadvantages**
 - 2-dimensional
 - Often need multiple projections
 - Can require extensive image editing
 - remove unwanted data
 - “Slab” mips - MIP from only a few images
Thin MIP CTA renal donor - FMD
Thin MIP CTU - TCC
Shaded Surface Display

- Select threshold value
- Eliminate all voxels below the threshold
- Project first voxel above chosen threshold along line of site into the volume
- All voxels given same intensity, grayscale or color
- Grayscale values used for shading from artificial light source to provide depth
Celiac Aneurysm – axial images
Celiac aneurysm – SSD / MIP
Shaded Surface Display

• Advantages
 • 3-Dimensional
 • Surface renderings such as used in CT colonography

• Disadvantages
 • Resultant image extremely sensitive to chosen threshold
 • Loses all gray scale information
 • Cannot differentiate between vessel lumen and calcifications, e.g.
Volume rendering

- Each voxel assigned grayscale or RGB, brightness, and opacity
- Opacity “probability” CT density or MR signal intensity
 - 0% - invisible
 - 100% - opaque
- Brighter objects behind will shine through lucent ones
- Advantages: uses entire data set, real time display, 3D
- Disadvantages: more memory intensive, slower
Clinical images – angiodysplasia SMA
VR and conventional Angio
VR renal transplant donor vessels
Clinical images - CT Urography

• Low opacity (26%) Volume renderings mimic plain radiology
Volume Rendering – CT urography

Low and high opacity settings
Perspective Volume or Surface Rendering

- Objects mapped to artificial point in the distance
 - near objects larger
 - far objects smaller
- Advantages
 - depth cues
 - endoluminal viewing similar to endoscopy
- Disadvantages: limited FOV, slower, more complex
Colon Polyp / FOV
Billing – two main CPT codes

<table>
<thead>
<tr>
<th>CPT/HCPCS Code</th>
<th>Description</th>
<th>Physician</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT 76376</td>
<td>3D rendering with interpretation and reporting of computed tomography, magnetic resonance imaging, ultrasound, or other tomographic modality; not requiring image postprocessing on an independent workstation (Use 76376 in conjunction with code[s] for base imaging procedure[s]) (Do not report 76376 in conjunction with 70496, 70498, 70544-70549, 71275, 71555, 72159, 72191, 72198, 73206, 73225, 73306, 73325, 74175, 74185, 75635, 75557-75564, 76377, 78000-78999, 0066T, 0067T, 0144T0151T, 0159T)</td>
<td>Professional*</td>
<td>$10.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical**</td>
<td>$62.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Global</td>
<td>$73.38</td>
</tr>
<tr>
<td>CPT 76377</td>
<td>3D rendering with interpretation and reporting of computed tomography, magnetic resonance imaging, ultrasound, or other tomographic modality; requiring image postprocessing on an independent workstation (Use 76376 in conjunction with code[s] for base imaging procedure[s]) (Do not report 76377 in conjunction with 70496, 70498, 70544-70549, 71275, 71555, 72159, 72191, 72198, 73206, 73225, 73306, 73325, 74175, 74185, 75635, 75557-75564, 76377, 78000-78999, 0066T, 0067T, 0144T0151T, 0159T)</td>
<td>Professional</td>
<td>$40.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical</td>
<td>$56.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Global</td>
<td>$97.34</td>
</tr>
</tbody>
</table>

Not billable with CTA
So, … what do we really do?

- MPRs – routine coronals on vast majority of cases
 - Sag and coronals on renal mass (surgical planning)
 - Sagittal through celiac / SMA on pre & post OLT patients
- Thin MIPs
 - Routine on renal donors (arterial phase)
 - Routine coronal thin MIPs on CTU
- Volume rendering
 - Low-opacity VR on CTU for Urogram-like image
 - Partial Nx and renal donor planning on request
- CT Colonography – primary 3D reading (perspective)